58 research outputs found

    A Low-Overhead Method for Pre-bond Test of Resonant 3-D Clock Distribution Networks

    Get PDF
    Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low power alternatives to con- ventional clock distribution schemes. These networks utilize ad- ditional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. Test is another complex task for 3-D ICs, where pre-bond test is a prerequisite. Contactless test has been considered as an alternative for conventional test methods. This paper, consequently, introduces a design method- ology for resonant 3-D clock networks that supports wireless pre- bond testing through the use of inductive links. By employing the inductors comprising the LC tanks of the resonant clock net- works as the receiver circuit for the links, the need for additional circuits and/or interconnect resources during pre-bond test is essentially eliminated. The proposed technique produces low power and pre-bond testable 3-D clock distribution networks. Simulation results indicate 98.5% and 99% decrease in the area overhead and power consumed by the contactless testing method as compared to existing methods

    Characterization of High Temperature Optocoupler for Power Electronic Systems

    Get PDF
    High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device

    Design and Test of a Gate Driver with Variable Drive and Self-Test Capability Implemented in a Silicon Carbide CMOS Process

    Get PDF
    Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits. The primary requirement to ensure rapid switching of power MOSFETs was a gate drive buffer capable of taking a control signal and driving the MOSFET gate with high current required. In this work, the first integrated SiC CMOS gate driver was developed in a 1.2 μm SiC CMOS process to drive a SiC power MOSFET. The driver was designed for close integration inside a power module and exposure to high temperatures. The drive strength of the gate driver was controllable to allow for managing power MOSFET switching speed and potential drain voltage overshoot. Output transistor layouts were optimized using custom Python software in conjunction with existing design tool resources. A wafer-level test system was developed to identify yield issues in the gate driver output transistors. This method allowed for qualitative and quantitative evaluation of transistor leakage while the system was under probe. Wafer-level testing and results are presented. The gate driver was tested under high temperature operation up to 530 degrees celsius. An integrated module was built and tested to illustrate the capability of the gate driver to control a power MOSFET under load. The adjustable drive strength feature was successfully demonstrated

    Microscale Infrared Technologies for Spectral Filtering and Wireless Neural Dust

    Full text link
    Pivotal technologies, such as optical computing, autonomous vehicles, and biomedical implantables, motivate microscale infrared (IR) components. Hyperspectral imagers (HSI), for example, require compact and narrowband filters to obtain high-spatial and -spectral resolution images. HSIs acquire continuous spectra at each pixel, enabling non-destructive analyses by resolving IR scattering/absorption signatures. Toward this end, dielectric subwavelength gratings (SWG) are intriguing filter candidates since they are low-loss, have no moving parts, and exhibit narrow spectral features. Wireless neural implantables are another apropos microscale IR technology. Wireless IR data and power transfer disposes of infection-prone percutaneous wires by leveraging the IR transparency window in biological tissue. This dissertation contains two related topics. The first details SWG IR filters, and the second studies progress toward wireless neural motes. This work extends the capabilities of SWG IR filters. Following a theoretical overview, mid-wave infrared (MWIR, 3-7 um) transmittance filters are experimentally demonstrated using the zero-contrast grating scheme. Via a facile silicon fabrication process, we realize narrowband polarization-dependent and polarization-independent MWIR transmittance filters with some of the highest Q observed in MWIR SWGs. An empirical study confirms the relationship between filter performance and grating size, an important trade-off for HSIs. We then demonstrate GaAs SWG filters for monolithic integration with active optoelectronic devices. The GaAs SWGs perform comparably to their silicon counterparts. To enable narrowband filtering at normal incidence, we investigate symmetry-breaking in geometrically asymmetric gratings. The presented SWG geometries access quasi-bound states in the continuum (BIC). Studies in Fano resonance and diffraction efficiency symmetry provide physical insight. Asymmetric 1D and 2D SWGs furnish polarization-dependent and -independent filtering, respectively. We experimentally demonstrate normal incidence long-wave IR (LWIR, 7-12 um) transmittance filtering in asymmetric SWGs and confirm symmetry-breaking implications. A reduced-symmetry hexagonal pattern presents an early design for truly polarization-independent quasi-BIC coupling in SWGs. Advancements in implantable neural devices promise great leaps in brain mapping and therapeutic intervention. To meet this challenge, we investigated a wireless neural mote system using near-infrared (NIR, 800 nm – 3 um) photovoltaics and LEDs to wirelessly harvest power and transmit data. The neural recorders consist of three subsystems: an epitaxial GaAs-based optoelectronic chip, a Si CMOS IC, and a carbon fiber probe. Though this work encompasses the efforts of many, this dissertation outlines contributions in a few critical areas. To overcome low-flux LED emission, we devise an optical setup with ≈0.1% photon detection efficiency. Monte Carlo techniques model NIR scattering in biological tissue. Another steep challenge is the heterogeneous integration of the three material systems in a compact (200x170x150 um^3) package. To relay data and power between the GaAs and CMOS chips, through-wafer vias are critical. Using a novel selective copper plating technique, we demonstrate through-wafer GaAs vias with <2 Ohm series resistance. Additionally, conductive blind vias are presented for carbon fiber probe insertion. A self-aligned parylene etch mask permits sub-kOhm connection to a buried metal contact while maintaining GOhm substrate isolation. Both via structures meet the requirements of being low-resistance, insulated from the substrate, and amendable to thinned wafer processing. Finally, we demonstrate extensive processing on thinned chips and advances toward full heterogeneous integration via flip-chip alignment and solder bump bonding.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169986/1/barrowm_1.pd
    • …
    corecore