1,674 research outputs found

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    The Light Lexicographic path Ordering

    Full text link
    We introduce syntactic restrictions of the lexicographic path ordering to obtain the Light Lexicographic Path Ordering. We show that the light lexicographic path ordering leads to a characterisation of the functions computable in space bounded by a polynomial in the size of the inputs

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    Complexity Hierarchies and Higher-order Cons-free Term Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of the left-hand sides; the computational intuition is that rules cannot build new data structures. In programming language research, cons-free languages have been used to characterize hierarchies of computational complexity classes; in term rewriting, cons-free first-order TRSs have been used to characterize the class PTIME. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the type order of the systems. We prove that, for every K ≥\geq 1, left-linear cons-free systems with type order K characterize EK^KTIME if unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with no assumptions on reduction strategy, (ii) we consequently obtain much larger classes for each type order (EK^KTIME versus EXPK−1^{K-1}TIME), and (iii) results for cons-free term rewriting systems have previously only been obtained for K = 1, and with additional syntactic restrictions besides cons-freeness and left-linearity. Our results are among the first implicit characterizations of the hierarchy E = E1^1TIME ⊊\subsetneq E2^2TIME ⊊\subsetneq ... Our work confirms prior results that having full non-determinism (via overlapping rules) does not directly allow for characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes like admitting product types or non-left-linear rules.Comment: extended version of a paper submitted to FSCD 2016. arXiv admin note: substantial text overlap with arXiv:1604.0893

    Memoization for Unary Logic Programming: Characterizing PTIME

    Full text link
    We give a characterization of deterministic polynomial time computation based on an algebraic structure called the resolution semiring, whose elements can be understood as logic programs or sets of rewriting rules over first-order terms. More precisely, we study the restriction of this framework to terms (and logic programs, rewriting rules) using only unary symbols. We prove it is complete for polynomial time computation, using an encoding of pushdown automata. We then introduce an algebraic counterpart of the memoization technique in order to show its PTIME soundness. We finally relate our approach and complexity results to complexity of logic programming. As an application of our techniques, we show a PTIME-completeness result for a class of logic programming queries which use only unary function symbols.Comment: Soumis {\`a} LICS 201

    Intensional properties of polygraphs

    Get PDF
    We present polygraphic programs, a subclass of Albert Burroni's polygraphs, as a computational model, showing how these objects can be seen as first-order functional programs. We prove that the model is Turing complete. We use polygraphic interpretations, a termination proof method introduced by the second author, to characterize polygraphic programs that compute in polynomial time. We conclude with a characterization of polynomial time functions and non-deterministic polynomial time functions.Comment: Proceedings of TERMGRAPH 2007, Electronic Notes in Computer Science (to appear), 12 pages, minor changes from previous versio

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    On Sharing, Memoization, and Polynomial Time (Long Version)

    Get PDF
    We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed value has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity

    Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems

    Full text link
    The general form of safe recursion (or ramified recurrence) can be expressed by an infinite graph rewrite system including unfolding graph rewrite rules introduced by Dal Lago, Martini and Zorzi, in which the size of every normal form by innermost rewriting is polynomially bounded. Every unfolding graph rewrite rule is precedence terminating in the sense of Middeldorp, Ohsaki and Zantema. Although precedence terminating infinite rewrite systems cover all the primitive recursive functions, in this paper we consider graph rewrite systems precedence terminating with argument separation, which form a subclass of precedence terminating graph rewrite systems. We show that for any precedence terminating infinite graph rewrite system G with a specific argument separation, both the runtime complexity of G and the size of every normal form in G can be polynomially bounded. As a corollary, we obtain an alternative proof of the original result by Dal Lago et al.Comment: In Proceedings TERMGRAPH 2014, arXiv:1505.06818. arXiv admin note: text overlap with arXiv:1404.619
    • …
    corecore