1,715 research outputs found

    Design of metallic nanoparticles gratings for filtering properties in the visible spectrum

    Full text link
    Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering functions. A Finite Element Method is used to model metallic nanoparticles gratings. The accuracy of this method is shown by comparing numerical results with measurements on a two-dimensional grating of gold nanocylinders with elliptic cross section. Then a parametric analysis is performed in order to design efficient filters with polarization dependent properties together with high transparency over the visible range. The behavior of nanoparticle gratings is also modelled using the Maxwell-Garnett homogenization theory and analyzed by comparison with the diffraction by a single nanoparticle. The proposed structures are intended to be included in optical systems which could find innovative applications.Comment: submitted to Applied Optic

    New approaches to liquid crystal beam-steering and tunable lensing

    Get PDF

    Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers

    Get PDF
    Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which relying on nonlinear optical effects in these 2D materials. This article introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials.Comment: 28 pages, 21 figure

    Tailored Light Scattering and Emission in Solar Cells and LEDs Using Ordered and Disordered Interfaces

    Get PDF

    Theory and numerical modeling of photonic resonances: Quasinormal Modal Expansion -- Applications in Electromagnetics

    Full text link
    The idea of the modal expansion in electromagnetics is derived from the research on electromagnetic resonators, which play an essential role in developments in nanophotonics. All of the electromagnetic resonators share a common property: they possess a discrete set of special frequencies that show up as peaks in scattering spectra and are called resonant modes. These resonant modes are soon recognized to dictate the interaction between electromagnetic resonators and light. This leads to a hypothesis that the optical response of resonators is the synthesis of the excitation of each physical-resonance-state in the system: Under the excitation of external pulses, these resonant modes are initially loaded, then release their energy which contributes to the total optical responses of the resonators. These resonant modes with complex frequencies are known in the literature as the Quasi-Normal Mode (QNM). Mathematically, these QNMs correspond to solutions of the eigenvalue problem of source-free Maxwell's equations. In the case where the optical structure of resonators is unbounded and the media are dispersive (and possibly anisotropic and non-reciprocal) this requires solving non-linear (in frequency) and non-Hermitian eigenvalue problems. Thus, the whole problem boils down to the study of the spectral theory for electromagnetic Maxwell operators. As a result, modal expansion formalisms have recently received a lot of attention in photonics because of their capabilities to model the physical properties in the natural resonance-state basis of the considered system, leading to a transparent interpretation of the numerical results. This manuscript is intended to extend the study of QNM expansion formalism, in particular, and nonlinear spectral theory, in general. At the same time, several numerical modelings are provided as examples for the application of modal expansion in computations.Comment: PhD thesi

    Gratings: Theory and Numeric Applications, Second Revisited Edition

    Get PDF
    International audienceThe second Edition of the Book contains 13 chapters, written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers.In comparison with the First Edition, we have added two more chapters (ch.12 and ch.13), and revised four other chapters (ch.6, ch.7, ch.10, and ch.11

    Gratings: Theory and Numeric Applications

    Get PDF
    International audienceThe book containes 11 chapters written by an international team of specialist in electromagnetic theory, numerical methods for modelling of light diffraction by periodic structures having one-, two-, or three-dimensional periodicity, and aiming numerous applications in many classical domains like optical engineering, spectroscopy, and optical telecommunications, together with newly born fields such as photonics, plasmonics, photovoltaics, metamaterials studies, cloaking, negative refraction, and super-lensing. Each chapter presents in detail a specific theoretical method aiming to a direct numerical application by university and industrial researchers and engineers
    • 

    corecore