854 research outputs found

    Synthesizing Short-Circuiting Validation of Data Structure Invariants

    Full text link
    This paper presents incremental verification-validation, a novel approach for checking rich data structure invariants expressed as separation logic assertions. Incremental verification-validation combines static verification of separation properties with efficient, short-circuiting dynamic validation of arbitrarily rich data constraints. A data structure invariant checker is an inductive predicate in separation logic with an executable interpretation; a short-circuiting checker is an invariant checker that stops checking whenever it detects at run time that an assertion for some sub-structure has been fully proven statically. At a high level, our approach does two things: it statically proves the separation properties of data structure invariants using a static shape analysis in a standard way but then leverages this proof in a novel manner to synthesize short-circuiting dynamic validation of the data properties. As a consequence, we enable dynamic validation to make up for imprecision in sound static analysis while simultaneously leveraging the static verification to make the remaining dynamic validation efficient. We show empirically that short-circuiting can yield asymptotic improvements in dynamic validation, with low overhead over no validation, even in cases where static verification is incomplete

    Lost in Abstraction: Monotonicity in Multi-Threaded Programs (Extended Technical Report)

    Full text link
    Monotonicity in concurrent systems stipulates that, in any global state, extant system actions remain executable when new processes are added to the state. This concept is not only natural and common in multi-threaded software, but also useful: if every thread's memory is finite, monotonicity often guarantees the decidability of safety property verification even when the number of running threads is unknown. In this paper, we show that the act of obtaining finite-data thread abstractions for model checking can be at odds with monotonicity: Predicate-abstracting certain widely used monotone software results in non-monotone multi-threaded Boolean programs - the monotonicity is lost in the abstraction. As a result, well-established sound and complete safety checking algorithms become inapplicable; in fact, safety checking turns out to be undecidable for the obtained class of unbounded-thread Boolean programs. We demonstrate how the abstract programs can be modified into monotone ones, without affecting safety properties of the non-monotone abstraction. This significantly improves earlier approaches of enforcing monotonicity via overapproximations

    Low-Effort Specification Debugging and Analysis

    Get PDF
    Reactive synthesis deals with the automated construction of implementations of reactive systems from their specifications. To make the approach feasible in practice, systems engineers need effective and efficient means of debugging these specifications. In this paper, we provide techniques for report-based specification debugging, wherein salient properties of a specification are analyzed, and the result presented to the user in the form of a report. This provides a low-effort way to debug specifications, complementing high-effort techniques including the simulation of synthesized implementations. We demonstrate the usefulness of our report-based specification debugging toolkit by providing examples in the context of generalized reactivity(1) synthesis.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Controlled and effective interpolation

    Get PDF
    Model checking is a well established technique to verify systems, exhaustively and automatically. The state space explosion, known as the main difficulty in model checking scalability, has been successfully approached by symbolic model checking which represents programs using logic, usually at the propositional or first order theories level. Craig interpolation is one of the most successful abstraction techniques used in symbolic methods. Interpolants can be efficiently generated from proofs of unsatisfiability, and have been used as means of over-approximation to generate inductive invariants, refinement predicates, and function summaries. However, interpolation is still not fully understood. For several theories it is only possible to generate one interpolant, giving the interpolation-based application no chance of further optimization via interpolation. For the theories that have interpolation systems that are able to generate different interpolants, it is not understood what makes one interpolant better than another, and how to generate the most suitable ones for a particular verification task. The goal of this thesis is to address the problems of how to generate multiple interpolants for theories that still lack this flexibility in their interpolation algorithms, and how to aim at good interpolants. This thesis extends the state-of-the-art by introducing novel interpolation frameworks for different theories. For propositional logic, this work provides a thorough theoretical analysis showing which properties are desirable in a labeling function for the Labeled Interpolation Systems framework (LIS). The Proof-Sensitive labeling function is presented, and we prove that it generates interpolants with the smallest number of Boolean connectives in the entire LIS framework. Two variants that aim at controlling the logical strength of propositional interpolants while maintaining a small size are given. The new interpolation algorithms are compared to previous ones from the literature in different model checking settings, showing that they consistently lead to a better overall verification performance. The Equalities and Uninterpreted Functions (EUF)-interpolation system, presented in this thesis, is a duality-based interpolation framework capable of generating multiple interpolants for a single proof of unsatisfiability, and provides control over the logical strength of the interpolants it generates using labeling functions. The labeling functions can be theoretically compared with respect to their strength, and we prove that two of them generate the interpolants with the smallest number of equalities. Our experiments follow the theory, showing that the generated interpolants indeed have different logical strength. We combine propositional and EUF interpolation in a model checking setting, and show that the strength of the interpolation algorithms for different theories has to be aligned in order to generate smaller interpolants. This work also introduces the Linear Real Arithmetic (LRA)-interpolation system, an interpolation framework for LRA. The framework is able to generate infinitely many interpolants of different logical strength using the duality of interpolants. The strength of the LRA interpolants can be controlled by a normalized strength factor, which makes it straightforward for an interpolationbased application to choose the level of strength it wants for the interpolants. Our experiments with the LRA-interpolation system and a model checker show that it is very important for the application to be able to fine tune the strength of the LRA interpolants in order to achieve optimal performance. The interpolation frameworks were implemented and form the interpolation module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has been integrated to the propositional interpolation-based model checkers FunFrog and eVolCheck, and to the first order interpolation-based model checkerHiFrog. This thesis presents real life model checking experiments using the novel interpolation frameworks and the tools aforementioned, showing the viability and strengths of the techniques

    Synthesis of Probabilistic Models for Quality-of-Service Software Engineering

    Get PDF
    An increasingly used method for the engineering of software systems with strict quality-of-service (QoS) requirements involves the synthesis and verification of probabilistic models for many alternative architectures and instantiations of system parameters. Using manual trial-and-error or simple heuristics for this task often produces suboptimal models, while the exhaustive synthesis of all possible models is typically intractable. The EvoChecker search-based software engineering approach presented in our paper addresses these limitations by employing evolutionary algorithms to automate the model synthesis process and to significantly improve its outcome. EvoChecker can be used to synthesise the Pareto-optimal set of probabilistic models associated with the QoS requirements of a system under design, and to support the selection of a suitable system architecture and configuration. EvoChecker can also be used at runtime, to drive the efficient reconfiguration of a self-adaptive software system. We evaluate EvoChecker on several variants of three systems from different application domains, and show its effectiveness and applicability

    Mangrove: an Inference-based Dynamic Invariant Mining for GPU Architectures

    Get PDF
    Likely invariants model properties that hold in operating conditions of a computing system. Dynamic mining of invariants aims at extracting logic formulas representing such properties from the system execution traces, and it is widely used for verification of intellectual property (IP) blocks. Although the extracted formulas represent likely invariants that hold in the considered traces, there is no guarantee that they are true in general for the system under verification. As a consequence, to increase the probability that the mined invariants are true in general, dynamic mining has to be performed to large sets of representative execution traces. This makes the execution-based mining process of actual IP blocks very time-consuming due to the trace lengths and to the large sets of monitored signals. This article presents extit{Mangrove}, an efficient implementation of a dynamic invariant mining algorithm for GPU architectures. Mangrove exploits inference rules, which are applied at run time to filter invariants from the execution traces and, thus, to sensibly reduce the problem complexity. Mangrove allows users to define invariant templates and, from these templates, it automatically generates kernels for parallel and efficient mining on GPU architectures. The article presents the tool, the analysis of its performance, and its comparison with the best sequential and parallel implementations at the state of the art

    Combining type checking with model checking for system verification

    Full text link
    Type checking is widely used in mainstream programming languages to detect programming errors at compile time. Model checking is gaining popularity as an automated technique for systematically analyzing behaviors of systems. My research focuses on combining these two software verification techniques synergically into one platform for the creation of correct models for software designs. This thesis describes two modeling languages ATS/PML and ATS/Veri that inherit the advanced type system from an existing programming language ATS, in which both dependent types of Dependent ML style and linear types are supported. A detailed discussion is given for the usage of advanced types to detect modeling errors at the stage of model construction. Going further, various modeling primitives with well-designed types are introduced into my modeling languages to facilitate a synergic combination of type checking with model checking. The semantics of ATS/PML is designed to be directly rooted in a well-known modeling language PROMELA. Rules for translation from ATS/PML to PROMELA are designed and a compiler is developed accordingly so that the SPIN model checker can be readily employed to perform checking on models constructed in ATS/PML. ATS/Veri is designed to be a modeling language, which allows a programmer to construct models for real-world multi-threaded software applications in the same way as writing a functional program with support for synchronization, communication, and scheduling among threads. Semantics of ATS/Veri is formally defined for the development of corresponding model checkers and a compiler is built to translate ATS/Veri into CSP# and exploit the state-of-the-art verification platform PAT for model checking ATS/Veri models. The correctness of such a transformational approach is illustrated based on the semantics of ATS/Veri and CSP#. In summary, the primary contribution of this thesis lies in the creation of a family of modeling languages with highly expressive types for modeling concurrent software systems as well as the related platform supporting verification via model checking. As such, we can combine type checking and model checking synergically to ensure software correctness with high confidence
    • …
    corecore