454 research outputs found

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators

    Get PDF
    We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling

    Silicon Photonic Platforms and Systems for High-speed Communications

    Get PDF
    Data communication is a critical component of modern technology in our society. There is an increasing reliance on information being at our fingers tips and we expect a low-latency, high-bandwidth connection to deliver entertainment or enhanced productivity. In order to serve this demand, communications devices are being pressed for smaller form factors, higher data throughput, lower power consumption and lower cost. Similar demands exist in a number of applications including metro/long-haul telecommunications, shorter datacenter links and supercomputing. Silicon photonics promises to be a technology that will solve some of the difficulties with improving communication devices. Building photonics in silicon allows for reuse of the same fabrication technology that is used by the CMOS electronics industry, potentially allowing for large volumes, high yields and low costs. Part I of this thesis details the design of components needed in a high-speed silicon photonic platform to meet the current challenges for high-speed communications. The author’s work in modeling photodetectors resulted in improving photodetector bandwidth from 30 GHz to 67 GHz, the fastest reported at the time of publication. Details regarding the optimization and test of modulators are also presented with the first-reported 50 Gbps modulator at 1310-nm. A large scale parallel channel demonstration of high-speed silicon photonics is then presented showing the potential scalability for silicon photonics systems. A full transceiver requires a number of components other than the photodetector and modulator that are the core active pieces of a silicon photonics platform. Part II includes work on the design and test of silicon photonic components providing functionality beyond the photodetector and modulator. A novel design integrating Metal-Semiconductor Field Effect Transistors (MESFETs) into a silicon photonics platform without process change is shown. This integration enables enhanced control functionality with minimal overhead. The critical final piece for a silicon photonics platform, adding a light source, is demonstrated along with performance results of the resulting tunable, extended C-band laser. In Part III, previous work on an enhanced silicon photonics platform with complementary components is used to build a high-speed integrated coherent link and then tested with a silicon photonics-based tunable laser. The transceiver was shown to operate at 34 Gbaud dual-polarization 16-QAM for a total of 272 Gbps over a single channel. This was the first published demonstration of an integrated coherent where all of the optics were built in a silicon photonics platform

    High speed plasmonic modulator array enabling dense optical interconnect solutions

    Get PDF
    Plasmonic modulators might pave the way for a new generation of compact low-power high-speed optoelectronic devices. We introduce an extremely compact transmitter based on plasmonic Mach-Zehnder modulators offering a capacity of 4 × 36 Gbit/s on a footprint that is only limited by the size of the high-speed contact pads. The transmitter array is contacted through a multicore fiber with a channel spacing of 50 μm
    • …
    corecore