327 research outputs found

    Sewer Robotics

    Get PDF

    Robotic-assisted ultrasound for fetal imaging: Evolution from single-arm to dual-arm system

    Get PDF
    © Springer Nature Switzerland AG 2019. The development of robotic-assisted extracorporeal ultrasound systems has a long history and a number of projects have been proposed since the 1990s focusing on different technical aspects. These aim to resolve the deficiencies of on-site manual manipulation of hand-held ultrasound probes. This paper presents the recent ongoing developments of a series of bespoke robotic systems, including both single-arm and dual-arm versions, for a project known as intelligent Fetal Imaging and Diagnosis (iFIND). After a brief review of the development history of the extracorporeal ultrasound robotic system used for fetal and abdominal examinations, the specific aim of the iFIND robots, the design evolution, the implementation details of each version, and the initial clinical feedback of the iFIND robot series are presented. Based on the preliminary testing of these newly-proposed robots on 42 volunteers, the successful and reliable working of the mechatronic systems were validated. Analysis of a participant questionnaire indicates a comfortable scanning experience for the volunteers and a good acceptance rate to being scanned by the robots

    Toward Fully Automated Robotic Platform for Remote Auscultation

    Full text link
    Since most developed countries are facing an increase in the number of patients per healthcare worker due to a declining birth rate and an aging population, relatively simple and safe diagnosis tasks may need to be performed using robotics and automation technologies, without specialists and hospitals. This study presents an automated robotic platform for remote auscultation, which is a highly cost-effective screening tool for detecting abnormal clinical signs. The developed robotic platform is composed of a 6-degree-of-freedom cooperative robotic arm, light detection and ranging (LiDAR) camera, and a spring-based mechanism holding an electric stethoscope. The platform enables autonomous stethoscope positioning based on external body information acquired using the LiDAR camera-based multi-way registration; the platform also ensures safe and flexible contact, maintaining the contact force within a certain range through the passive mechanism. Our preliminary results confirm that the robotic platform enables estimation of the landing positions required for cardiac examinations based on the depth and landmark information of the body surface. It also handles the stethoscope while maintaining the contact force without relying on the push-in displacement by the robotic arm.Comment: 8 pages, 11 figure

    Robotic Platforms for Ultrasound Diagnostics and Treatment

    Get PDF
    Medical imaging introduced the greatest paradigm change in the history of modern medicine, and particularly ultrasound (US) is becoming the most widespread imaging modality. The integration of digital imaging into the surgical domain opens new frontiers in diagnostics and intervention, and the combination of robotics leads to improved accuracy and targeting capabilities. This paper reviews the state-of-the-art in US-based robotic platforms, identifying the main research and clinical trends, reviewing current capabilities and limitations. The focus of the study includes non-autonomous US-based systems, US-based automated robotic navigation systems and US-guided autonomous tools. These areas outline future development, projecting a swarm of new applications in the computer-assisted surgical domain

    Optimization and validation of a new 3D-US imaging robot to detect, localize and quantify lower limb arterial stenoses

    Get PDF
    L’athĂ©rosclĂ©rose est une maladie qui cause, par l’accumulation de plaques lipidiques, le durcissement de la paroi des artĂšres et le rĂ©trĂ©cissement de la lumiĂšre. Ces lĂ©sions sont gĂ©nĂ©ralement localisĂ©es sur les segments artĂ©riels coronariens, carotidiens, aortiques, rĂ©naux, digestifs et pĂ©riphĂ©riques. En ce qui concerne l’atteinte pĂ©riphĂ©rique, celle des membres infĂ©rieurs est particuliĂšrement frĂ©quente. En effet, la sĂ©vĂ©ritĂ© de ces lĂ©sions artĂ©rielles est souvent Ă©valuĂ©e par le degrĂ© d’une stĂ©nose (rĂ©duction >50 % du diamĂštre de la lumiĂšre) en angiographie, imagerie par rĂ©sonnance magnĂ©tique (IRM), tomodensitomĂ©trie ou Ă©chographie. Cependant, pour planifier une intervention chirurgicale, une reprĂ©sentation gĂ©omĂ©trique artĂ©rielle 3D est notamment prĂ©fĂ©rable. Les mĂ©thodes d’imagerie par coupe (IRM et tomodensitomĂ©trie) sont trĂšs performantes pour gĂ©nĂ©rer une imagerie tridimensionnelle de bonne qualitĂ© mais leurs utilisations sont dispendieuses et invasives pour les patients. L’échographie 3D peut constituer une avenue trĂšs prometteuse en imagerie pour la localisation et la quantification des stĂ©noses. Cette modalitĂ© d’imagerie offre des avantages distincts tels la commoditĂ©, des coĂ»ts peu Ă©levĂ©s pour un diagnostic non invasif (sans irradiation ni agent de contraste nĂ©phrotoxique) et aussi l’option d’analyse en Doppler pour quantifier le flux sanguin. Étant donnĂ© que les robots mĂ©dicaux ont dĂ©jĂ  Ă©tĂ© utilisĂ©s avec succĂšs en chirurgie et en orthopĂ©die, notre Ă©quipe a conçu un nouveau systĂšme robotique d’échographie 3D pour dĂ©tecter et quantifier les stĂ©noses des membres infĂ©rieurs. Avec cette nouvelle technologie, un radiologue fait l’apprentissage manuel au robot d’un balayage Ă©chographique du vaisseau concernĂ©. Par la suite, le robot rĂ©pĂšte Ă  trĂšs haute prĂ©cision la trajectoire apprise, contrĂŽle simultanĂ©ment le processus d’acquisition d’images Ă©chographiques Ă  un pas d’échantillonnage constant et conserve de façon sĂ©curitaire la force appliquĂ©e par la sonde sur la peau du patient. Par consĂ©quent, la reconstruction d’une gĂ©omĂ©trie artĂ©rielle 3D des membres infĂ©rieurs Ă  partir de ce systĂšme pourrait permettre une localisation et une quantification des stĂ©noses Ă  trĂšs grande fiabilitĂ©. L’objectif de ce projet de recherche consistait donc Ă  valider et optimiser ce systĂšme robotisĂ© d’imagerie Ă©chographique 3D. La fiabilitĂ© d’une gĂ©omĂ©trie reconstruite en 3D Ă  partir d’un systĂšme rĂ©fĂ©rentiel robotique dĂ©pend beaucoup de la prĂ©cision du positionnement et de la procĂ©dure de calibration. De ce fait, la prĂ©cision pour le positionnement du bras robotique fut Ă©valuĂ©e Ă  travers son espace de travail avec un fantĂŽme spĂ©cialement conçu pour simuler la configuration des artĂšres des membres infĂ©rieurs (article 1 - chapitre 3). De plus, un fantĂŽme de fils croisĂ©s en forme de Z a Ă©tĂ© conçu pour assurer une calibration prĂ©cise du systĂšme robotique (article 2 - chapitre 4). Ces mĂ©thodes optimales ont Ă©tĂ© utilisĂ©es pour valider le systĂšme pour l’application clinique et trouver la transformation qui convertit les coordonnĂ©es de l’image Ă©chographique 2D dans le rĂ©fĂ©rentiel cartĂ©sien du bras robotisĂ©. À partir de ces rĂ©sultats, tout objet balayĂ© par le systĂšme robotique peut ĂȘtre caractĂ©risĂ© pour une reconstruction 3D adĂ©quate. Des fantĂŽmes vasculaires compatibles avec plusieurs modalitĂ©s d’imagerie ont Ă©tĂ© utilisĂ©s pour simuler diffĂ©rentes reprĂ©sentations artĂ©rielles des membres infĂ©rieurs (article 2 - chapitre 4, article 3 - chapitre 5). La validation des gĂ©omĂ©tries reconstruites a Ă©tĂ© effectuĂ©e Ă  l`aide d`analyses comparatives. La prĂ©cision pour localiser et quantifier les stĂ©noses avec ce systĂšme robotisĂ© d’imagerie Ă©chographique 3D a aussi Ă©tĂ© dĂ©terminĂ©e. Ces Ă©valuations ont Ă©tĂ© rĂ©alisĂ©es in vivo pour percevoir le potentiel de l’utilisation d’un tel systĂšme en clinique (article 3- chapitre 5).Atherosclerosis is a disease caused by the accumulation of lipid deposits inducing the remodeling and hardening of the vessel wall, which leads to a progressive narrowing of arteries. These lesions are generally located on the coronary, carotid, aortic, renal, digestive and peripheral arteries. With regards to peripheral vessels, lower limb arteries are frequently affected. The severity of arterial lesions are evaluated by the stenosis degree (reduction > 50.0 % of the lumen diameter) using angiography, magnetic resonance angiography (MRA), computed tomography (CT) and ultrasound (US). However, to plan a surgical therapeutic intervention, a 3D arterial geometric representation is notably preferable. Imaging methods such as MRA and CT are very efficient to generate a three-dimensional imaging of good quality even though their use is expensive and invasive for patients. 3D-ultrasound can be perceived as a promising avenue in imaging for the location and the quantification of stenoses. This non invasive, non allergic (i.e, nephrotoxic contrast agent) and non-radioactive imaging modality offers distinct advantages in convenience, low cost and also multiple diagnostic options to quantify blood flow in Doppler. Since medical robots already have been used with success in surgery and orthopedics, our team has conceived a new medical 3D-US robotic imaging system to localize and quantify arterial stenoses in lower limb vessels. With this new technology, a clinician manually teaches the robotic arm the scanning path. Then, the robotic arm repeats with high precision the taught trajectory and controls simultaneously the ultrasound image acquisition process at even sampling and preserves safely the force applied by the US probe. Consequently, the reconstruction of a lower limb arterial geometry in 3D with this system could allow the location and quantification of stenoses with high accuracy. The objective of this research project consisted in validating and optimizing this 3D-ultrasound imaging robotic system. The reliability of a 3D reconstructed geometry obtained with 2D-US images captured with a robotic system depends considerably on the positioning accuracy and the calibration procedure. Thus, the positioning accuracy of the robotic arm was evaluated in the workspace with a lower limb-mimicking phantom design (article 1 - chapter 3). In addition, a Z-phantom was designed to assure a precise calibration of the robotic system. These optimal methods were used to validate the system for the clinical application and to find the transformation which converts image coordinates of a 2D-ultrasound image into the robotic arm referential. From these results, all objects scanned by the robotic system can be adequately reconstructed in 3D. Multimodal imaging vascular phantoms of lower limb arteries were used to evaluate the accuracy of the 3D representations (article 2 - chapter 4, article 3 - chapter 5). The validation of the reconstructed geometry with this system was performed by comparing surface points with the manufacturing vascular phantom file surface points. The accuracy to localize and quantify stenoses with the 3D-ultrasound robotic imaging system was also determined. These same evaluations were analyzed in vivo to perceive the feasibility of the study

    Review of robotic technology for keyhole transcranial stereotactic neurosurgery

    Get PDF
    The research of stereotactic apparatus to guide surgical devices began in 1908, yet a major part of today's stereotactic neurosurgeries still rely on stereotactic frames developed almost half a century ago. Robots excel at handling spatial information, and are, thus, obvious candidates in the guidance of instrumentation along precisely planned trajectories. In this review, we introduce the concept of stereotaxy and describe a standard stereotactic neurosurgery. Neurosurgeons' expectations and demands regarding the role of robots as assistive tools are also addressed. We list the most successful robotic systems developed specifically for or capable of executing stereotactic neurosurgery. A critical review is presented for each robotic system, emphasizing the differences between them and detailing positive features and drawbacks. An analysis of the listed robotic system features is also undertaken, in the context of robotic application in stereotactic neurosurgery. Finally, we discuss the current perspective, and future directions of a robotic technology in this field. All robotic systems follow a very similar and structured workflow despite the technical differences that set them apart. No system unequivocally stands out as an absolute best. The trend of technological progress is pointing toward the development of miniaturized cost-effective solutions with more intuitive interfaces.This work has been partially financed by the NETT Project (FP7-PEOPLE-2011-ITN-289146), ACTIVE Project (FP7-ICT-2009-6-270460), and FCT PhD grant (ref. SFRH/BD/86499/2012)
    • 

    corecore