46 research outputs found

    Analysis of Speaker Adaptation Algorithms for HMM-based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm

    Get PDF
    In this paper we analyze the effects of several factors and configuration choices encountered during training and model construction when we want to obtain better and more stable adaptation in HMM-based speech synthesis. We then propose a new adaptation algorithm called constrained structural maximum a posteriori linear regression (CSMAPLR) whose derivation is based on the knowledge obtained in this analysis and on the results of comparing several conventional adaptation algorithms. Here we investigate six major aspects of the speaker adaptation: initial models transform functions, estimation criteria, and sensitivity of several linear regression adaptation algorithms algorithms. Analyzing the effect of the initial model, we compare speaker-dependent models, gender-independent models, and the simultaneous use of the gender-dependent models to single use of the gender-dependent models. Analyzing the effect of the transform functions, we compare the transform function for only mean vectors with that for mean vectors and covariance matrices. Analyzing the effect of the estimation criteria, we compare the ML criterion with a robust estimation criterion called structural MAP. We evaluate the sensitivity of several thresholds for the piecewise linear regression algorithms and take up methods combining MAP adaptation with the linear regression algorithms. We incorporate these adaptation algorithms into our speech synthesis system and present several subjective and objective evaluation results showing the utility and effectiveness of these algorithms in speaker adaptation for HMM-based speech synthesis

    Voice Conversion

    Get PDF

    Robust Speaker-Adaptive HMM-Based Text-to-Speech Synthesis

    Get PDF
    AbstractWe present an algorithm for solving the radiative transfer problem on massively parallel computers using adaptive mesh refinement and domain decomposition. The solver is based on the method of characteristics which requires an adaptive raytracer that integrates the equation of radiative transfer. The radiation field is split into local and global components which are handled separately to overcome the non-locality problem. The solver is implemented in the framework of the magneto-hydrodynamics code FLASH and is coupled by an operator splitting step. The goal is the study of radiation in the context of star formation simulations with a focus on early disc formation and evolution. This requires a proper treatment of radiation physics that covers both the optically thin as well as the optically thick regimes and the transition region in particular. We successfully show the accuracy and feasibility of our method in a series of standard radiative transfer problems and two 3D collapse simulations resembling the early stages of protostar and disc formation

    Adapting and Controlling DNN-Based Speech Synthesis Using Input Codes

    Get PDF

    THE ROLE OF GLOTTAL SOURCE PARAMETERS FOR HIGH-QUALITY TRANSFORMATION OF PERCEPTUAL AGE

    Get PDF
    ABSTRACT The intuitive control of voice transformation (e.g., age/sex, emotions) is useful to extend the expressive repertoire of a voice. This paper explores the role of glottal source parameters for the control of voice transformation. First, the SVLN speech synthesizer (Separation of the Vocal-tract with the Liljencrants-fant model plus Noise) is used to represent the glottal source parameters (and thus, voice quality) during speech analysis and synthesis. Then, a simple statistical method is presented to control speech parameters during voice transformation : a GMM is used to model the speech parameters of a voice, and regressions are then used to adapt the GMMs statistics (mean and variance) to a control parameter (e.g., age/sex, emotions). A subjective experiment conducted on the control of perceptual age proves the importance of the glottal source parameters for the control of voice transformation, and shows the efficiency of the statistical model to control voice parameters while preserving a high-quality of the voice transformation

    Personalising synthetic voices for individuals with severe speech impairment.

    Get PDF
    Speech technology can help individuals with speech disorders to interact more easily. Many individuals with severe speech impairment, due to conditions such as Parkinson's disease or motor neurone disease, use voice output communication aids (VOCAs), which have synthesised or pre-recorded voice output. This voice output effectively becomes the voice of the individual and should therefore represent the user accurately. Currently available personalisation of speech synthesis techniques require a large amount of data input, which is difficult to produce for individuals with severe speech impairment. These techniques also do not provide a solution for those individuals whose voices have begun to show the effects of dysarthria. The thesis shows that Hidden Markov Model (HMM)-based speech synthesis is a promising approach for 'voice banking' for individuals before their condition causes deterioration of the speech and once deterioration has begun. Data input requirements for building personalised voices with this technique using human listener judgement evaluation is investigated. It shows that 100 sentences is the minimum required to build a significantly different voice from an average voice model and show some resemblance to the target speaker. This amount depends on the speaker and the average model used. A neural network analysis trained on extracted acoustic features revealed that spectral features had the most influence for predicting human listener judgements of similarity of synthesised speech to a target speaker. Accuracy of prediction significantly improves if other acoustic features are introduced and combined non-linearly. These results were used to inform the reconstruction of personalised synthetic voices for speakers whose voices had begun to show the effects of their conditions. Using HMM-based synthesis, personalised synthetic voices were built using dysarthric speech showing similarity to target speakers without recreating the impairment in the synthesised speech output

    Articulatory Control of HMM-based Parametric Speech Synthesis using Feature-Space-Switched Multiple Regression

    Get PDF

    HMM-based speech synthesis using an acoustic glottal source model

    Get PDF
    Parametric speech synthesis has received increased attention in recent years following the development of statistical HMM-based speech synthesis. However, the speech produced using this method still does not sound as natural as human speech and there is limited parametric flexibility to replicate voice quality aspects, such as breathiness. The hypothesis of this thesis is that speech naturalness and voice quality can be more accurately replicated by a HMM-based speech synthesiser using an acoustic glottal source model, the Liljencrants-Fant (LF) model, to represent the source component of speech instead of the traditional impulse train. Two different analysis-synthesis methods were developed during this thesis, in order to integrate the LF-model into a baseline HMM-based speech synthesiser, which is based on the popular HTS system and uses the STRAIGHT vocoder. The first method, which is called Glottal Post-Filtering (GPF), consists of passing a chosen LF-model signal through a glottal post-filter to obtain the source signal and then generating speech, by passing this source signal through the spectral envelope filter. The system which uses the GPF method (HTS-GPF system) is similar to the baseline system, but it uses a different source signal instead of the impulse train used by STRAIGHT. The second method, called Glottal Spectral Separation (GSS), generates speech by passing the LF-model signal through the vocal tract filter. The major advantage of the synthesiser which incorporates the GSS method, named HTS-LF, is that the acoustic properties of the LF-model parameters are automatically learnt by the HMMs. In this thesis, an initial perceptual experiment was conducted to compare the LFmodel to the impulse train. The results showed that the LF-model was significantly better, both in terms of speech naturalness and replication of two basic voice qualities (breathy and tense). In a second perceptual evaluation, the HTS-LF system was better than the baseline system, although the difference between the two had been expected to be more significant. A third experiment was conducted to evaluate the HTS-GPF system and an improved HTS-LF system, in terms of speech naturalness, voice similarity and intelligibility. The results showed that the HTS-GPF system performed similarly to the baseline. However, the HTS-LF system was significantly outperformed by the baseline. Finally, acoustic measurements were performed on the synthetic speech to investigate the speech distortion in the HTS-LF system. The results indicated that a problem in replicating the rapid variations of the vocal tract filter parameters at transitions between voiced and unvoiced sounds is the most significant cause of speech distortion. This problem encourages future work to further improve the system
    corecore