2,926 research outputs found

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions

    Get PDF
    In decentralized networks (of sensors, connected objects, etc.), there is an important need for efficient algorithms to optimize a global cost function, for instance to learn a global model from the local data collected by each computing unit. In this paper, we address the problem of decentralized minimization of pairwise functions of the data points, where these points are distributed over the nodes of a graph defining the communication topology of the network. This general problem finds applications in ranking, distance metric learning and graph inference, among others. We propose new gossip algorithms based on dual averaging which aims at solving such problems both in synchronous and asynchronous settings. The proposed framework is flexible enough to deal with constrained and regularized variants of the optimization problem. Our theoretical analysis reveals that the proposed algorithms preserve the convergence rate of centralized dual averaging up to an additive bias term. We present numerical simulations on Area Under the ROC Curve (AUC) maximization and metric learning problems which illustrate the practical interest of our approach

    Correlation Decay in Random Decision Networks

    Full text link
    We consider a decision network on an undirected graph in which each node corresponds to a decision variable, and each node and edge of the graph is associated with a reward function whose value depends only on the variables of the corresponding nodes. The goal is to construct a decision vector which maximizes the total reward. This decision problem encompasses a variety of models, including maximum-likelihood inference in graphical models (Markov Random Fields), combinatorial optimization on graphs, economic team theory and statistical physics. The network is endowed with a probabilistic structure in which costs are sampled from a distribution. Our aim is to identify sufficient conditions to guarantee average-case polynomiality of the underlying optimization problem. We construct a new decentralized algorithm called Cavity Expansion and establish its theoretical performance for a variety of models. Specifically, for certain classes of models we prove that our algorithm is able to find near optimal solutions with high probability in a decentralized way. The success of the algorithm is based on the network exhibiting a correlation decay (long-range independence) property. Our results have the following surprising implications in the area of average case complexity of algorithms. Finding the largest independent (stable) set of a graph is a well known NP-hard optimization problem for which no polynomial time approximation scheme is possible even for graphs with largest connectivity equal to three, unless P=NP. We show that the closely related maximum weighted independent set problem for the same class of graphs admits a PTAS when the weights are i.i.d. with the exponential distribution. Namely, randomization of the reward function turns an NP-hard problem into a tractable one

    Regret-Minimization Algorithms for Multi-Agent Cooperative Learning Systems

    Full text link
    A Multi-Agent Cooperative Learning (MACL) system is an artificial intelligence (AI) system where multiple learning agents work together to complete a common task. Recent empirical success of MACL systems in various domains (e.g. traffic control, cloud computing, robotics) has sparked active research into the design and analysis of MACL systems for sequential decision making problems. One important metric of the learning algorithm for decision making problems is its regret, i.e. the difference between the highest achievable reward and the actual reward that the algorithm gains. The design and development of a MACL system with low-regret learning algorithms can create huge economic values. In this thesis, I analyze MACL systems for different sequential decision making problems. Concretely, the Chapter 3 and 4 investigate the cooperative multi-agent multi-armed bandit problems, with full-information or bandit feedback, in which multiple learning agents can exchange their information through a communication network and the agents can only observe the rewards of the actions they choose. Chapter 5 considers the communication-regret trade-off for online convex optimization in the distributed setting. Chapter 6 discusses how to form high-productive teams for agents based on their unknown but fixed types using adaptive incremental matchings. For the above problems, I present the regret lower bounds for feasible learning algorithms and provide the efficient algorithms to achieve this bound. The regret bounds I present in Chapter 3, 4 and 5 quantify how the regret depends on the connectivity of the communication network and the communication delay, thus giving useful guidance on design of the communication protocol in MACL systemsComment: Thesis submitted to London School of Economics and Political Science for PhD in Statistic

    When is the individually rational payoff in a repeated game equal to the minmax payoff?

    Get PDF
    We study the relationship between a player’s (stage game) minmax payoff and the individually rational payoff in repeated games with imperfect monitoring. We characterize the signal structures under which these two payoffs coincide for any payoff matrix. Under a full rank assumption, we further show that, if the monitoring structure of an infinitely repeated game ‘nearly’ satisfies this condition, then these two payoffs are approximately equal, independently of the discount factor. This provides conditions under which existing folk theorems exactly characterize the limiting payoff set.
    • …
    corecore