77,390 research outputs found

    Robot control in a message passing environment: theoretical questions and preliminary experiments

    Get PDF
    The performance of real-time distributed control systems is shown to depend critically on both communication and computation costs. A taxonomy for distributed system performance measurement is introduced. A roughly accurate method of performance prediction for simple systems is presented. Experimental results demonstrate the effects of communication protocols on real-world system performance

    Development of a generic activities model of command and control

    Get PDF
    This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model will be used to guide further research into technological support of command and control activities

    Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    Full text link
    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.Comment: 6 pages, 5 figures
    • …
    corecore