287 research outputs found

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Vulnerabilities of signaling system number 7 (SS7) to cyber attacks and how to mitigate against these vulnerabilities.

    Get PDF
    As the mobile network subscriber base exponentially increases due to some attractive offerings such as anytime anywhere accessibility, seamless roaming, inexpensive handsets with sophisticated applications, and Internet connectivity, the mobile telecommunications network has now become the primary source of communication for not only business and pleasure, but also for the many life and mission critical services. This mass popularisation of telecommunications services has resulted in a heavily loaded Signaling System number 7 (SS7) signaling network which is used in Second and Third Generations (2G and 3G) mobile networks and is needed for call control and services such as caller identity, roaming, and for sending short message servirces. SS7 signaling has enjoyed remarkable popularity for providing acceptable voice quality with negligible connection delays, pos- sibly due to its circuit-switched heritage. However, the traditional SS7 networks are expensive to lease and to expand, hence to cater for the growing signaling demand and to provide the seamless interconnectivity between the SS7 and IP networks a new suite of protocols known as Signaling Transport (SIGTRAN) has been designed to carry SS7 signaling messages over IP. Due to the intersignaling between the circuit-switched and the packet-switched networks, the mo- bile networks have now left the “walled garden”, which is a privileged, closed and isolated ecosystem under the full control of mobile carriers, using proprietary protocols and has minimal security risks due to restricted user access. Potentially, intersignaling can be exploited from the IP side to disrupt the services provided on the circuit-switched side. This study demonstrates the vulnerabilities of SS7 messages to cyber-attacks while being trans- ported over IP networks and proposes some solutions based on securing both the IP transport and SCTP layers of the SIGTRAN protocol stack

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    Get PDF
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment

    Full text link
    [EN] The 5G network is a next-generation wireless form of communication and the latest mobile technology. In practice, 5G utilizes the Internet of Things (IoT) to work in high-tra_ c networks with multiple nodes/ sensors in an attempt to transmit their packets to a destination simultaneously, which is a characteristic of IoT applications. Due to this, 5G o_ ers vast bandwidth, low delay, and extremely high data transfer speed. Thus, 5G presents opportunities and motivations for utilizing next-generation protocols, especially the stream control transmission protocol (SCTP). However, the congestion control mechanisms of the conventional SCTP negatively influence overall performance. Moreover, existing mechanisms contribute to reduce 5G and IoT performance. Thus, a new machine learning model based on a decision tree (DT) algorithm is proposed in this study to predict optimal enhancement of congestion control in the wireless sensors of 5G IoT networks. The model was implemented on a training dataset to determine the optimal parametric setting in a 5G environment. The dataset was used to train the machine learning model and enable the prediction of optimal alternatives that can enhance the performance of the congestion control approach. The DT approach can be used for other functions, especially prediction and classification. DT algorithms provide graphs that can be used by any user to understand the prediction approach. The DT C4.5 provided promising results, with more than 92% precision and recall.Najm, IA.; Hamoud, AK.; Lloret, J.; Bosch Roig, I. (2019). Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment. Electronics. 8(6):1-23. https://doi.org/10.3390/electronics8060607S12386Rahem, A. A. T., Ismail, M., Najm, I. A., & Balfaqih, M. (2017). Topology sense and graph-based TSG: efficient wireless ad hoc routing protocol for WANET. Telecommunication Systems, 65(4), 739-754. doi:10.1007/s11235-016-0242-7Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87-97. doi:10.1016/j.jnca.2018.04.004Sunny, A., Panchal, S., Vidhani, N., Krishnasamy, S., Anand, S. V. R., Hegde, M., … Kumar, A. (2017). A generic controller for managing TCP transfers in IEEE 802.11 infrastructure WLANs. Journal of Network and Computer Applications, 93, 13-26. doi:10.1016/j.jnca.2017.05.006Jain, R. (1990). Congestion control in computer networks: issues and trends. IEEE Network, 4(3), 24-30. doi:10.1109/65.56532Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion Control Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1369-1390. doi:10.1109/surv.2014.021714.00123Floyd, S. (2000). Congestion Control Principles. doi:10.17487/rfc2914Qazi, I. A., & Znati, T. (2011). On the design of load factor based congestion control protocols for next-generation networks. Computer Networks, 55(1), 45-60. doi:10.1016/j.comnet.2010.07.010Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89-102. doi:10.1145/964725.633035Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., & Rhee, I. (2013). An improved hop-by-hop interest shaper for congestion control in named data networking. ACM SIGCOMM Computer Communication Review, 43(4), 55-60. doi:10.1145/2534169.2491233Mirza, M., Sommers, J., Barford, P., & Zhu, X. (2010). A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Transactions on Networking, 18(4), 1026-1039. doi:10.1109/tnet.2009.2037812Taherkhani, N., & Pierre, S. (2016). Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3275-3285. doi:10.1109/tits.2016.2546555Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communications Surveys & Tutorials, 19(4), 2432-2455. doi:10.1109/comst.2017.2707140Gonzalez-Landero, F., Garcia-Magarino, I., Lacuesta, R., & Lloret, J. (2018). PriorityNet App: A Mobile Application for Establishing Priorities in the Context of 5G Ultra-Dense Networks. IEEE Access, 6, 14141-14150. doi:10.1109/access.2018.2811900Lloret, J., Parra, L., Taha, M., & Tomás, J. (2017). An architecture and protocol for smart continuous eHealth monitoring using 5G. Computer Networks, 129, 340-351. doi:10.1016/j.comnet.2017.05.018Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable Path Routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49-63. doi:10.1016/j.pmcj.2017.11.004Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90-107. doi:10.1016/j.comnet.2018.03.023Shelke, M., Malhotra, A., & Mahalle, P. N. (2017). Congestion-Aware Opportunistic Routing Protocol in Wireless Sensor Networks. Smart Innovation, Systems and Technologies, 63-72. doi:10.1007/978-981-10-5544-7_7Godoy, P. D., Cayssials, R. L., & García Garino, C. G. (2018). Communication channel occupation and congestion in wireless sensor networks. Computers & Electrical Engineering, 72, 846-858. doi:10.1016/j.compeleceng.2017.12.049Najm, I. A., Ismail, M., Lloret, J., Ghafoor, K. Z., Zaidan, B. B., & Rahem, A. A. T. (2015). Improvement of SCTP congestion control in the LTE-A network. Journal of Network and Computer Applications, 58, 119-129. doi:10.1016/j.jnca.2015.09.003Najm, I. A., Ismail, M., & Abed, G. A. (2014). High-Performance Mobile Technology LTE-A using the Stream Control Transmission Protocol: A Systematic Review and Hands-on Analysis. Journal of Applied Sciences, 14(19), 2194-2218. doi:10.3923/jas.2014.2194.2218Katuwal, R., Suganthan, P. N., & Zhang, L. (2018). An ensemble of decision trees with random vector functional link networks for multi-class classification. Applied Soft Computing, 70, 1146-1153. doi:10.1016/j.asoc.2017.09.020Gómez, S. E., Martínez, B. C., Sánchez-Esguevillas, A. J., & Hernández Callejo, L. (2017). Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal. Computer Networks, 127, 68-80. doi:10.1016/j.comnet.2017.07.018Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches. IEEE Communications Magazine, 51(6), 86-93. doi:10.1109/mcom.2013.6525600Liang, D., Zhang, Z., & Peng, M. (2015). Access Point Reselection and Adaptive Cluster Splitting-Based Indoor Localization in Wireless Local Area Networks. IEEE Internet of Things Journal, 2(6), 573-585. doi:10.1109/jiot.2015.2453419Park, H., Haghani, A., Samuel, S., & Knodler, M. A. (2018). Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accident Analysis & Prevention, 112, 39-49. doi:10.1016/j.aap.2017.11.025Shu, J., Liu, S., Liu, L., Zhan, L., & Hu, G. (2017). Research on Link Quality Estimation Mechanism for Wireless Sensor Networks Based on Support Vector Machine. Chinese Journal of Electronics, 26(2), 377-384. doi:10.1049/cje.2017.01.013Riekstin, A. C., Januário, G. C., Rodrigues, B. B., Nascimento, V. T., Carvalho, T. C. M. B., & Meirosu, C. (2016). Orchestration of energy efficiency capabilities in networks. Journal of Network and Computer Applications, 59, 74-87. doi:10.1016/j.jnca.2015.06.015Adi, E., Baig, Z., & Hingston, P. (2017). Stealthy Denial of Service (DoS) attack modelling and detection for HTTP/2 services. Journal of Network and Computer Applications, 91, 1-13. doi:10.1016/j.jnca.2017.04.015Stimpfling, T., Bélanger, N., Cherkaoui, O., Béliveau, A., Béliveau, L., & Savaria, Y. (2017). Extensions to decision-tree based packet classification algorithms to address new classification paradigms. Computer Networks, 122, 83-95. doi:10.1016/j.comnet.2017.04.021Singh, D., Nigam, S. P., Agrawal, V. P., & Kumar, M. (2016). Vehicular traffic noise prediction using soft computing approach. Journal of Environmental Management, 183, 59-66. doi:10.1016/j.jenvman.2016.08.053Xia, Y., Chen, W., Liu, X., Zhang, L., Li, X., & Xiang, Y. (2017). Adaptive Multimedia Data Forwarding for Privacy Preservation in Vehicular Ad-Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2629-2641. doi:10.1109/tits.2017.2653103Tariq, F., & Baig, S. (2017). Machine Learning Based Botnet Detection in Software Defined Networks. International Journal of Security and Its Applications, 11(11), 1-12. doi:10.14257/ijsia.2017.11.11.01Wu, T., Petrangeli, S., Huysegems, R., Bostoen, T., & De Turck, F. (2017). Network-based video freeze detection and prediction in HTTP adaptive streaming. Computer Communications, 99, 37-47. doi:10.1016/j.comcom.2016.08.005Pham, T. N. D., & Yeo, C. K. (2018). Adaptive trust and privacy management framework for vehicular networks. Vehicular Communications, 13, 1-12. doi:10.1016/j.vehcom.2018.04.006Mohamed, M. F., Shabayek, A. E.-R., El-Gayyar, M., & Nassar, H. (2019). An adaptive framework for real-time data reduction in AMI. Journal of King Saud University - Computer and Information Sciences, 31(3), 392-402. doi:10.1016/j.jksuci.2018.02.012Louvieris, P., Clewley, N., & Liu, X. (2013). Effects-based feature identification for network intrusion detection. Neurocomputing, 121, 265-273. doi:10.1016/j.neucom.2013.04.038Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., … Abogharaf, A. (2016). Machine-to-Machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83-105. doi:10.1016/j.jnca.2016.02.016Hamoud, A. K., Hashim, A. S., & Awadh, W. A. (2018). Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 26. doi:10.9781/ijimai.2018.02.004Lavanya, D. (2012). Ensemble Decision Tree Classifier For Breast Cancer Data. International Journal of Information Technology Convergence and Services, 2(1), 17-24. doi:10.5121/ijitcs.2012.2103Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017-1026. doi:10.1016/j.amc.2006.09.022Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater survelliance systems. Ad Hoc Networks, 4(4), 431-446. doi:10.1016/j.adhoc.2004.10.008Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys & Tutorials, 20(3), 2237-2263. doi:10.1109/comst.2018.282888
    corecore