1,010 research outputs found

    Waste Collection Vehicle Routing Problem: Literature Review

    Get PDF
    Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP) in literature. Based on a classification of waste collection (residential, commercial and industrial), firstly the key findings for these three types of waste collection are presented. Therefore, according to the model (Node Routing Problems and Arc Routing problems) used to represent WCVRP, different methods and techniques are analyzed in this paper to solve WCVRP. This paper attempts to serve as a roadmap of research literature produced in the field of WCVRP

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Differential evolution for urban transit routing problem

    Get PDF
    The urban transit routing problem (UTRP) involves the construction of route sets on existing road networks to cater for the transit demand efficiently. This is an NP-hard problem, where the generation of candidate route sets can lead to a number of potential routes being discarded on the grounds of infeasibility. This paper presents a new repair mechanism to complement the existing terminal repair and the make-small-change operators in dealing with the infeasibility of the candidate route set. When solving the UTRP, the general aim is to determine a set of transit route networks that achieves a minimum total cost for both the passenger and the operator. With this in mind, we propose a differential evolution (DE) algorithm for solving the UTRP with a specific objective of minimizing the average travel time of all served passengers. Computational experiments are performed on the basis of benchmark Mandl’s Swiss network. Computational results from the proposed repair mechanism are comparable with the existing repair mechanisms. Furthermore, the combined repair mechanisms of all three operators produced very promising results. In addition, the proposed DE algorithm outperformed most of the published results in the literature

    A Tabu Search Based Metaheuristic for Dynamic Carpooling Optimization

    Get PDF
    International audienceThe carpooling problem consists in matching a set of riders' requests with a set of drivers' offers by synchronizing their origins, destinations and time windows. The paper presents the so-called Dynamic Carpooling Optimization System (DyCOS), a system which supports the automatic and optimal ridematching process between users on very short notice or even en-route. Nowadays, there are numerous research contributions that revolve around the carpooling problem, notably in the dynamic context. However, the problem's high complexity and the real time aspect are still challenges to overcome when addressing dynamic carpooling. To counter these issues, DyCOS takes decisions using a novel Tabu Search based metaheuristic. The proposed algorithm employs an explicit memory system and several original searching strategies developed to make optimal decisions automatically. To increase users' satisfaction, the proposed metaheuristic approach manages the transfer process and includes the possibility to drop off the passenger at a given walking distance from his destination or at a transfer node. In addition, the detour concept is used as an original aspiration process, to avoid the entrapment by local solutions and improve the generated solution. For a rigorous assessment of generated solutions , while considering the importance and interaction among the optimization criteria, the algorithm adopts the Choquet integral operator as an aggregation approach. To measure the effectiveness of the proposed method, we develop a simulation environment based on actual carpooling demand data from the metropolitan area of Lille in the north of France

    A simheuristic algorithm for time-dependent waste collection management with stochastic travel times

    Get PDF
    A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain

    Road-based goods transportation : a survey of real-world logistics applications from 2000 to 2015

    Get PDF
    The vehicle routing problem has been widely studied from a technical point of view for more than 50 years. Many of its variants are rooted in practical settings. This paper provides a survey of the main real-life applications of road-based goods transportation over the past 15 years. It reviews papers in the areas of oil, gas and fuel transportation, retail, waste collection and management, mail and package delivery and food distribution. Some perspectives on future research and applications are discussed

    Symbiotic Tabu Search

    Get PDF
    corecore