108 research outputs found

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    In the last decades significant changes in the manufacturing environment have been noticed: moving from a local economy towards a global economy, with markets asking for products with high quality at lower costs, highly customised and with short life cycle. In this environment, the manufacturing enterprises, to avoid the risk to lose competitiveness, search to answer more closely to the customer demands, by improving their flexibility and agility, while maintaining their productivity and quality. Actually, the dynamic response to emergence is becoming a key issue, due to the weak response of the traditional manufacturing control systems to unexpected disturbances, mainly because of the rigidity of their control architectures. In these circumstances, the challenge is to develop manufacturing control systems with autonomy and intelligence capabilities, fast adaptation to the environment changes, more robustness against the occurrence of disturbances, and easier integration of manufacturing resources and legacy systems. Several architectures using emergent concepts and technologies have been proposed, in particular those based in the holonic manufacturing paradigm. Holonic manufacturing is a paradigm based in the ideas of the philosopher Arthur Koestler, who proposed the word holon to describe a basic unit of organisation in biological and social systems. A holon, as Koestler devised the term, is an identifiable part of a (manufacturing) system that has a unique identity, yet is made up of sub-ordinate parts and in turn is part of a larger whole. The introduction of the holonic manufacturing paradigm allows a new approach to the manufacturing problem, bringing the advantages of modularity, decentralisation, autonomy, scalability, and re-use of software components. This dissertation intends to develop an agile and adaptive manufacturing control architecture to face the current requirements imposed to the manufacturing enterprises. The architecture proposed in this dissertation addresses the need for the fast reaction to disturbances at the shop floor level, increasing the agility and flexibility of the enterprise, when it works in volatile environments, characterised by the frequent occurrence of unexpected disturbances. The proposed architecture, designated by ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), is based in the holonic manufacturing paradigm, build upon autonomous and cooperative holons, allowing the development of manufacturing control applications that present all the features of decentralised and holonic systems. ADACOR holonic architecture introduces an adaptive control that balances dynamically between a more centralised structure and a more decentralised one, allowing to combine the global production optimisation with agile reaction to unexpected disturbances. Nas últimas décadas têm-se assistido a mudanças significativas no ambiente de fabrico: evoluindo de uma economia local para um economia global, com os mercados a procurar produtos com elevada qualidade a baixos preços, altamente customizados e com um ciclo de vida curto. Neste ambiente, as empresas de manufactura, para evitar o risco de perda de competitividade, procuram responder às solicitações dos clientes, melhorando a sua flexibilidade e agilidade, mantendo os mesmos índices de produtividade e qualidade. Na verdade, a resposta dinâmica à emergência está a tornar-se num assunto chave, devido `a fraca resposta a perturbações que os sistemas de controlo de fabrico tradicionais apresentam, principalmente devido à rigidez das suas arquitecturas de controlo. Nestas circunstâncias, é fundamental o desenvolvimento de sistemas de controlo de fabrico com capacidades de autonomia e inteligência, rápida adaptação às mudanças, maior robustez à ocorrência de perturbações e fácil integração de recursos físicos e sistemas legados. Diversas arquitecturas usando conceitos e tecnologias emergentes têm sido propostas, em particular algumas baseadas no paradigma da produção holónica. O paradigma da produção holónica é inspirado nas ideias de Arthur Koestler, que propôs a palavra holon para descrever uma unidade básica de organização de sistemas biológicos e sociais. Um holon, de acordo com a definição de Koestler, é uma parte identificável do sistema com identidade única, composta por sub-partes e fazendo simultaneamente parte do todo. A introdução do paradigma da produção holónica permite uma nova abordagem aos sistemas de controlo de fabrico, trazendo vantagens de modularidade, descentralização, autonomia, escalabilidade e reutilização de componentes. Esta dissertação pretende desenvolver uma arquitectura de controlo ágil e adaptativa que suporte os requisitos actuais impostos `as empresas de manufactura. A arquitectura proposta visa a necessidade de uma reacção rápida a perturbações, ao nível da planta fabril, melhorando a flexibilidade e agilidade da empresa quando esta opera em ambientes voláteis, caracterizados pela ocorrência frequente de perturbações inesperadas. A arquitectura proposta, designada por ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), é baseada no paradigma da produção holónica e construída sobre holons autónomos e cooperativos, permitindo o desenvolvimento de aplicações de controlo de fabrico que apresentem todas as características dos sistemas descentralizados e holónicos. A arquitectura holónica ADACOR introduz um controlo adaptativo que balança dinamicamente entre uma estrutura de controlo mais centralizada e uma mais descentralizada, permitindo combinar a optimização da produção com a ágil reacção a perturbações

    Predictable multi-processor system on chip design for multimedia applications

    Get PDF
    The design of multimedia systems has become increasingly complex due to consumer requirements. Consumers demand the functionalities offered by a huge desktop from these systems. Many of these systems are mobile. Therefore, power consumption and size of these devices should be small. These systems are increasingly becoming multi-processor based (MPSoCs) for the reasons of power and performance. Applications execute on these systems in different combinations also known as use-cases. Applications may have different performance requirements in each use-case. Currently, verification of all these use-cases takes bulk of the design effort. There is a need for analysis based techniques so that the platforms have a predictable behaviour and in turn provide guarantees on performance without expending precious man hours on verification. In this dissertation, techniques and architectures have been developed to design and manage these multi-processor based systems efficiently. The dissertation presents predictable architectural components for MPSoCs, a Predictable MPSoC design strategy, automatic platform synthesis tool, a run-time system and an MPSoC simulation technique. The introduction of predictability helps in rapid design of MPSoC platforms. Chapter 1 of the thesis studies the trends in modern multimedia applications and processor architectures. The chapter further highlights the problems in the design of MPSoC platforms and emphasizes the need of predictable design techniques. Predictable design techniques require predictable application and architectural components. The chapter further elaborates on Synchronous Data Flow Graphs which are used to model the applications throughout this thesis. The chapter presents the architecture template used in this thesis and enlists the contributions of the thesis. One of the contributions of this thesis is the design of a predictable component called communication assist. Chapter 2 of the thesis describes the architecture of this communication assist. The communication assist presented in this thesis not only decouples the communication from computation but also provides timing guarantees. Based on this communication assist, an MPSoC platform generation technique has been presented that can design MPSoC platforms capable of satisfying the throughput constraints of multiple applications in all use-cases. The technique is presented in Chapter 3. The design strategy uses three simple steps for platform design. In the first step it finds the required number of processors. The second step minimizes the communication interconnect between the processors and the third step minimizes the communication memory requirement of the platform. Further in Chapter 4, a tool has been developed to generate CA-based platforms for FPGAs. The output of this tool can be used to synthesize platforms on real hardware with the help of FPGA synthesis tools. The applications executing on these platforms often exhibit dynamism e.g. variation in task execution times and change in application throughput requirements. Further, new applications may often be added by consumers at run-time. Resource managers have been presented in literature to handle such dynamic situations. However, the scalability of these resource managers becomes an issue with the increase in number of processors and applications. Chapter 5 presents distributed run-time resource management techniques. Two versions of distributed resource managers have been presented which are scalable with the number of applications and processors. MPSoC platforms for real-time applications are designed assuming worst-case task execution times. It is known that the difference between average-case and worst-case behaviour can be quite large. Therefore, knowing the average case performance is also important for the system designer, and software simulation is often employed to estimate this. However, simulation in software is slow and does not scale with the number of applications and processing elements. In Chapter 6, a fast and scalable simulation methodology is introduced that can simulate the execution of multiple applications on an MPSoC platform. It is based on parallel execution of SDF (Synchronous Data Flow) models of applications. The simulation methodology uses Parallel Discrete Event Simulation (PDES) primitives and it is termed as "Smart Conservative PDES". The methodology generates a parallel simulator which is synthesizable on FPGAs. The framework can also be used to model dynamic arbitration policies which are difficult to analyse using models. The generated platform is also useful in carrying out Design Space Exploration as shown in the thesis. Finally, Chapter 7 summarizes the main findings and (practical) implications of the studies described in previous chapters of this dissertation. Using the contributions mentioned in the thesis, a designer can design and implement predictable multiprocessor based systems capable of satisfying throughput constraints of multiple applications in given set of use-cases, and employ resource management strategies to deal with dynamism in the applications. The chapter also describes the main limitations of this dissertation and makes suggestions for future research

    Job Shop Scheduling with Flexible Maintenance Planning

    Get PDF
    This thesis considers the scheduling challenges encountered at a particular facility in the nuclear industry. The scheduling problem is modelled as a variant of the job shop scheduling problem. Important aspects of the considered problem include the scheduling of jobs with both soft and hard due dates, and the integration of maintenance planning with job scheduling. Two variants of the scheduling problem are considered: The first variant makes the classic job shop assumption of infinite queueing capacity at each machine, while such queueing capacity is non-existent in the second variant. Without queueing capacity, the scheduling problem is a variant of the blocking job shop problem. For the non-blocking variant of the problem, it is shown that good solutions can be obtained quickly by hybridising a novel Ant Colony Optimisation method with a novel Branch and Bound method. For the blocking variant of the problem, it is shown that a novel Branch and Bound method can rapidly find optimal solutions. This Branch and Bound method is shown to provide good performance due to, amongst other things, a novel search strategy and a novel branching strategy

    Train scheduling with application to the UK rail network

    No full text
    Nowadays, transforming the railway industry for better performance and making the best usage of the current capacity are the key issues in many countries. Operational research methods and in particular scheduling techniques have a substantial potential to offer algorithmic solutions to improve railway operation and control. This thesis looks at train scheduling and rescheduling problems in a microscopic level with regard to the track topology. All of the timetable components are fixed and we aim to minimize delay by considering a tardiness objective function and only allowing changes to the order and to the starting times of trains on blocks. Various operational and safety constraints should be considered. We have achieved further developments in the field including generalizations to the existing models in order to obtain a generic model that includes important additional constraints. We make use of the analogy between the train scheduling problem and job shop scheduling problem. The model is customized to the UK railway network and signaling system. Introduced solution methods are inspired by the successful results of the shifting bottleneck to solve the job shop scheduling problems. Several solution methods such as mathematical programming and different variants of the shifting bottleneck are investigated. The proposed methods are implemented on a real-world case study based on London Bridge area in the South East of the UK. It is a dense network of interconnected lines and complicated with regard to stations and junctions structure. Computational experiments show the efficiency and limitations of the mathematical programming model and one variant of the proposed shifting bottleneck algorithms. This study also addresses train routing and rerouting problems in a mesoscopic level regarding relaxing some of the detailed constraints. The aim is to make the best usage of routing options in the network to minimize delay propagation. In addition to train routes, train entry times and orders on track segment are defined. Hence, the routing and scheduling decisions are combined in the solutions arising from this problem. Train routing and rerouting problems are formulated as modified job shop problems to include the main safety and operational constraints. Novel shifting bottleneck algorithms are provided to solve the problem. Computational results are reported on the same case study based on London Bridge area and the results show the efficiency of one variant of the developed shifting bottleneck algorithms in terms of solution quality and runtime

    A Constraint-based Job-Shop Scheduling Model for Software Development Planning

    Get PDF
    This paper proposes a constraint-based model for the Job Shop Scheduling Problem to be solved using local search techniques. The model can be used to represent a multiple software process planning problem when the different (activities of) projects compete for limited sta®. The main aspects of the model are: the use of integer variables which represent the relative order of the operations to be scheduled, and two global constraints, all different and increasing, for ensuring feasibility. An interesting property of the model is that cycle detection in the sched- ules is implicit in the satisfaction of the constraints. In order to test the proposed model, a parameterized local search algorithm has been used, with a neighborhood similar to the Nowicki and Smutnicki one, which has been adapted in order to be suitable for the proposed model.Ministerio de Educación y Ciencia DIP2006-15476-C02-0
    corecore