38 research outputs found

    Parameter and Payload Identification of a 2-DOF Robotic Manipulator: An Algebraic Identification Approach

    Get PDF
    Este artรญculo aborda el problema de identificar los parรกmetros y las cargas รบtiles de un manipulador robรณtico 2-DOF. La metodologรญa propuesta para nuestra investigaciรณn fue el mรฉtodo de identificaciรณn algebraica realizada en dos etapas: primero, identificando los parรกmetros del manipulador, y segundo, identificando la carga รบtil de la punta. Se utilizaron dos casos de simulaciรณn numรฉrica diferentes para validar la metodologรญa de identificaciรณn propuesta. En ambos casos se logrรณ una rรกpida convergencia con un bajo porcentaje de error.This paper addresses the problem of identifying the parameters and the payloads of a 2-DOF robotic manipulator. The methodology proposed for our research was the algebraic identification method conducted in two stages: First, identifying the parameters of the manipulator and second, identifying the tip payload. Two different numerical simulation cases were used to validate the proposed identification methodology. In both cases, fast convergence was achieved with a low error percentage

    ๊ตฌ์กฐ๋กœ๋ด‡์„ ์œ„ํ•œ ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์ข…์šฐ.Over the last several years, robotics has experienced a striking development, and a new generation of robots has emerged that shows great promise in being able to accomplish complex tasks associated with human behavior. Nowadays the objectives of the robots are no longer restricted to the automaton in the industrial process but are changing into explorers for hazardous, harsh, uncooperative, and extreme environments. As these robots usually operate in dynamic and unstructured environments, they should be robust, adaptive, and reactive under various changing operation conditions. We propose online hierarchical optimization-based planning and control methodologies for a rescue robot to execute a given mission in such a highly unstructured environment. A large number of degrees of freedom is provided to robots in order to achieve diverse kinematic and dynamic tasks. However, accomplishing such multiple objectives renders on-line reactive motion planning and control problems more difficult to solve due to the incompatible tasks. To address this problem, we exploit a hierarchical structure to precisely resolve conflicts by creating a priority in which every task is achieved as much as possible according to the levels. In particular, we concentrate on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face of singularity. As robotic systems with real-time motion planners or controllers often execute unrehearsed missions, a desired task cannot always be driven to a singularity free configuration. We develop a generic solver for regularized hierarchical quadratic programming without resorting to any off-the-shelf QP solver to take advantage of the null-space projections for computational efficiency. Therefore, the underlying principles are thoroughly investigated. The robust optimal solution is obtained under both equality and inequality tasks or constraints while addressing all problems resulting from the regularization. Especially as a singular value decomposition centric approach is leveraged, all hierarchical solutions and Lagrange multipliers for properly handling the inequality constraints are analytically acquired in a recursive procedure. The proposed algorithm works fast enough to be used as a practical means of real-time control system, so that it can be used for online motion planning, motion control, and interaction force control in a single hierarchical optimization. Core system design concepts of the rescue robot are presented. The goals of the robot are to safely extract a patient and to dispose a dangerous object instead of humans. The upper body is designed humanoid in form with replaceable modularized dual arms. The lower body is featured with a hybrid tracked and legged mobile platform to simultaneously acquire versatile manipulability and all-terrain mobility. Thus, the robot can successfully execute a driving task, dangerous object manipulation, and casualty extraction missions by changing the pose and modularized equipments in an optimized manner. Throughout the dissertation, all proposed methods are validated through extensive numerical simulations and experimental tests. We highlight precisely how the rescue robot can execute a casualty extraction and a dangerous object disposal mission both in indoor and outdoor environments that none of the existing robots has performed.์ตœ๊ทผ์— ๋“ฑ์žฅํ•œ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ๊ธฐ์กด์—๋Š” ์ธ๊ฐ„๋งŒ์ด ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๋ณต์žกํ•œ ์ผ์„ ๋กœ๋ด‡ ๋˜ํ•œ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ DARPA Robotics Challenge๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค์„ ์ž˜ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋กœ๋ด‡๋“ค์€ ๊ณต์žฅ๊ณผ ๊ฐ™์€ ์ •ํ˜•ํ™”๋œ ํ™˜๊ฒฝ์—์„œ ์ž๋™ํ™”๋œ ์ผ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋˜ ์ž„๋ฌด์—์„œ ๋” ๋‚˜์•„๊ฐ€ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—์„œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ์œ„ํ—˜ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‚ฌ๋žŒ๋“ค์€ ์žฌ๋‚œํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•˜๊ณ  ์‹œ์˜ ์ ์ ˆํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋Œ€์•ˆ ์ค‘์—์„œ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๋Œ€์ฒ˜ ๋ฐฉ์•ˆ์œผ๋กœ ๋กœ๋ด‡์„ ์ƒ๊ฐํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋กœ๋ด‡์€ ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•ด์•ผํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ ๋Šฅ๋™์ ์œผ๋กœ ๋ฐ˜์‘์„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ด‡์ด ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๊ฐ•๊ฑดํ•˜๋ฉด์„œ๋„ ์ ์‘์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์กฐ ๋กœ๋ด‡์˜ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋งŽ์€ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํ•˜๋‚˜์˜ ์ „์‹  ๋™์ž‘์„ ์ƒ์„ฑํ•  ๋•Œ ๋‹ค์–‘ํ•œ ๊ธฐ๊ตฌํ•™ ํ˜น์€ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ข…ํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ ๋™์ž‘ ์š”์†Œ๋“ค์„ ์ตœ์ ํ™”ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ƒํ™ฉ ์— ๋”ฐ๋ผ ๊ฐ ๋™์ž‘ ์š”์†Œ์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ œ์–ดํ•œ๋‹ค. ์ฆ‰, ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค‘์š”ํ•œ ๋™์ž‘์š”์†Œ๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋Š” ๋ถ€๋ถ„ ํ˜น์€ ์ „์ฒด์ ์œผ๋กœ ํฌ๊ธฐํ•˜๊ธฐ๋„ ํ•˜๋ฉด์„œ ๋งค์šฐ ์œ ์—ฐํ•˜๊ฒŒ ์ „์ฒด ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ตœ์ ํ™” ํ•œ๋‹ค. ์ธ๊ฐ„๊ณผ ๊ฐ™์ด ๋‹ค์ž์œ ๋„๋ฅผ ๋ณด์œ ํ•œ ๋กœ๋ด‡ ๋˜ํ•œ ๊ธฐ๊ตฌํ•™๊ณผ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ž‘์—…๊ณต๊ฐ„(task space) ํ˜น์€ ๊ด€์ ˆ๊ณต๊ฐ„(configuration space)์—์„œ ์ •์˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ์„ ์ˆœ์œ„์— ๋”ฐ๋ผ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์ „์ฒด ๋™์ž‘์„ ์ƒ ์„ฑํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์„œ๋กœ ์–‘๋ฆฝํ•˜๊ธฐ ์–ด๋ ค์šด ๋กœ๋ด‡์˜ ๋™์ž‘ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋™์ž‘๋“ค ์‚ฌ์ด์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๊ณ„์ธต์„ ์ƒ์„ฑํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋กœ๋ด‡์˜ ์ „์‹  ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์˜ค๋žซ๋™์•ˆ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜๋ฉด ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋†’์€ ๋™์ž‘๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ์‹คํ–‰ํ•˜์ง€๋งŒ, ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋“ค๋„ ๊ฐ€๋Šฅํ•œ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ด€์ ˆ์˜ ๊ตฌ๋™ ๋ฒ”์œ„์™€ ๊ฐ™์€ ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ๊นŒ์ง€ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง๊นŒ์ง€ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋ฐ ํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋“ฑ์‹๊ณผ ๋ถ€๋“ฑ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š” ๊ตฌ์†์กฐ๊ฑด ํ˜น์€ ๋™์ž‘์š”์†Œ๋ฅผ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ๋™์‹œ์— ํฌํ•จ์‹œํ‚ค๊ณ , ํŠน์ด์ ์ด ์กด์žฌํ•˜๋”๋ผ๋„ ๊ฐ•๊ฑด์„ฑ๊ณผ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ด€์ ˆ๊ณต๊ฐ„์—์„œ์˜ ์ตœ์ ํ•ด๋ฅผ ํ™•๋ณดํ•˜๋Š”๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์™œ๋‚˜ํ•˜๋ฉด ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์€ ์‚ฌ์ „์— ๊ณ„ํš๋œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋™์ž‘์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํŠน์ด์ ์ด ์—†๋Š” ์ž์„ธ๋กœ ๋กœ๋ด‡์„ ํ•ญ์ƒ ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ ‡๊ฒŒ ํŠน์ด์ ์„ ํšŒํ”ผํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋กœ๋ด‡์„ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์€ ๋กœ๋ด‡์˜ ์šด์šฉ์„ฑ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŠน์ด์  ๊ทผ๋ฐฉ์—์„œ์˜ ํ•ด์˜ ๊ฐ•๊ฑด์„ฑ์ด ๋ณด์žฅ๋˜์ง€ ์•Š์œผ๋ฉด ๋กœ๋ด‡ ๊ด€์ ˆ์— ๊ณผ๋„ํ•œ ์†๋„ ํ˜น์€ ํ† ํฌ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋กœ๋ด‡์˜ ์ž„๋ฌด ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์†์ƒ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ๋กœ๋ด‡๊ณผ ํ•จ๊ป˜ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ์ƒํ•ด๋ฅผ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์šฐ์„ ์ˆœ์œ„ ๊ธฐ๋ฐ˜์˜ ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์ •๊ทœํ™” (regularization)๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” (RHQP: Regularized Hierarchical Quadratic Program) ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋ถ€๋“ฑ์‹์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ์ •๊ทœํ™”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์•ผ๊ธฐ๋˜๋Š” ๋งŽ์€ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ํ•ด์˜ ์ตœ์ ์„ฑ๊ณผ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ ์™ธ๋ถ€์˜ ์ตœ์ ํ™” ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ˆ˜์น˜์  ์ตœ์ ํ™” (numerical optimization) ์ด๋ก ๊ณผ ์šฐ์„ ์ˆœ์œ„์— ๊ธฐ๋ฐ˜์„ ๋‘๋Š” ์—ฌ์œ ์ž์œ ๋„ ๋กœ๋ด‡์˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์ฐจ ํ”„๋กœ๊ทธ๋žจ(quadratic programming)์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ด์™€ ๋™์‹œ์— ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ์ด๋ก ์  ๊ตฌ์กฐ๋ฅผ ์ฒ ์ €ํ•˜๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด (singular value decomposition)๋ฅผ ํ†ตํ•ด ์ตœ์ ํ•ด์™€ ๋ถ€๋“ฑ์‹ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฅผ ์žฌ๊ท€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด์„์  ํ˜•ํƒœ๋กœ ๊ตฌํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ณ  ๋™์‹œ์— ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์„ ์˜ค๋ฅ˜ ์—†์ด ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ํž˜์ œ์–ด๊นŒ์ง€ ํ™•์žฅํ•˜์—ฌ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜์—ฌ ๋กœ๋ด‡์ด ์ ์ ˆํ•œ ํž˜์œผ๋กœ ํ™˜๊ฒฝ๊ณผ ์ ‘์ด‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋กœ๋ด‡์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ์˜ ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ์ด๋™ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์ƒ์œผ๋กœ ๋กœ๋ด‡์„ ์„ค๊ณ„ํ•˜์—ฌ ๊ตฌ์กฐ ๋กœ๋ด‡์œผ๋กœ ํ•˜์—ฌ๊ธˆ ์ตœ์ข… ๋ชฉ์ ์œผ๋กœ ์„ค์ •๋œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ๋ถ€์ƒ์ž๋ฅผ ๊ตฌ์กฐํ•˜๊ณ  ์œ„ํ—˜๋ฌผ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์ž„๋ฌด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๊ตฌ์กฐ ๋กœ๋ด‡์— ํ•„์š”ํ•œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด์™€ ์œ„ํ—˜๋ฌผ ์ฒ˜๋ฆฌ ์ž„๋ฌด์— ๋”ฐ๋ผ ๊ต์ฒด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“ˆํ˜•์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ž„๋ฌด์— ๋”ฐ๋ผ ์ตœ์ ํ™”๋œ ๋งค๋‹ˆํ“ฐ ๋ ˆ์ดํ„ฐ๋ฅผ ์žฅ์ฐฉํ•˜์—ฌ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ฒด๋Š” ํŠธ๋ž™๊ณผ ๊ด€์ ˆ์ด ๊ฒฐํ•ฉ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ˜•ํƒœ๋ฅผ ์ทจํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฃผํ–‰ ์ž„๋ฌด์™€ ์กฐ์ž‘์ž„๋ฌด์— ๋”ฐ๋ผ ํ˜•์ƒ์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜•์ƒ ๋ณ€๊ฒฝ๊ณผ ๋ชจ๋“ˆํ™”๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด์„œ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ํ—˜ํ•œ ์ง€ํ˜•์—์„œ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผํ–‰ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๊ตฌ์กฐ๋กœ๋ด‡์˜ ์„ค๊ณ„์™€ ์‹ค์‹œ๊ฐ„ ๊ณ„์ธต์  ์ œ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„์ •ํ˜• ์‹ค๋‚ด์™ธ ํ™˜๊ฒฝ์—์„œ ๊ตฌ์กฐ๋กœ๋ด‡์ด ์ฃผํ–‰์ž„๋ฌด, ์œ„ํ—˜๋ฌผ ์กฐ์ž‘์ž„๋ฌด, ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ•ด์„๊ณผ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ž…์ฆํ•จ์œผ๋กœ์จ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์„ค๊ณ„์™€ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ์ œ์–ด ์ „๋žต์˜ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Related Works and Research Problems for Hierarchical Control 3 1.2.1 Classical Approaches 3 1.2.2 State-of-the-Art Strategies 4 1.2.3 Research Problems 7 1.3 Robust Rescue Robots 9 1.4 Research Goals 12 1.5 Contributions of ThisThesis 13 1.5.1 Robust Hierarchical Task-Priority Control 13 1.5.2 Design Concepts of Robust Rescue Robot 16 1.5.3 Hierarchical Motion and ForceControl 17 1.6 Dissertation Preview 18 2 Preliminaries for Task-Priority Control Framework 21 2.1 Introduction 21 2.2 Task-Priority Inverse Kinematics 23 2.3 Recursive Formulation of Null Space Projector 28 2.4 Conclusion 31 3 Robust Hierarchical Task-Priority Control 33 3.1 Introduction 33 3.1.1 Motivations 35 3.1.2 Objectives 36 3.2 Task Function Approach 37 3.3 Regularized Hierarchical Optimization with Equality Tasks 41 3.3.1 Regularized Hierarchical Optimization 41 3.3.2 Optimal Solution 45 3.3.3 Task Error and Hierarchical Matrix Decomposition 49 3.3.4 Illustrative Examples for Regularized Hierarchical Optimization 56 3.4 Regularized Hierarchical Optimization with Inequality Constraints 60 3.4.1 Lagrange Multipliers 61 3.4.2 Modified Active Set Method 66 3.4.3 Illustrative Examples of Modified Active Set Method 70 3.4.4 Examples for Hierarchical Optimization with Inequality Constraint 72 3.5 DLS-HQP Algorithm 79 3.6 Concluding Remarks 80 4 Rescue Robot Design and Experimental Results 83 4.1 Introduction 83 4.2 Rescue Robot Design 85 4.2.1 System Design 86 4.2.2 Variable Configuration Mobile Platform 92 4.2.3 Dual Arm Manipulators 95 4.2.4 Software Architecture 97 4.3 Performance Verification for Hierarchical Motion Control 99 4.3.1 Real-Time Motion Generation 99 4.3.2 Task Specifications 103 4.3.3 Singularity Robust Task Priority 106 4.3.4 Inequality Constraint Handling and Computation Time 111 4.4 Singularity Robustness and Inequality Handling for Rescue Mission 117 4.5 Field Tests 122 4.6 Concluding Remarks 126 5 Hierarchical Motion and Force Control 129 5.1 Introduction 129 5.2 Operational Space Control 132 5.3 Acceleration-Based Hierarchical Motion Control 134 5.4 Force Control 137 5.4.1 Force Control with Inner Position Loop 141 5.4.2 Force Control with Inner Velocity Loop 144 5.5 Motion and Force Control 145 5.6 Numerical Results for Acceleration-Based Motion and Force Control 148 5.6.1 Task Specifications 150 5.6.2 Force Control Performance 151 5.6.3 Singularity Robustness and Inequality Constraint Handling 155 5.7 Velocity Resolved Motion and Force Control 160 5.7.1 Velocity-Based Motion and Force Control 161 5.7.2 Experimental Results 163 5.8 Concluding Remarks 167 6 Conclusion 169 6.1 Summary 169 6.2 Concluding Remarks 173 A Appendix 175 A.1 Introduction to PID Control 175 A.2 Inverse Optimal Control 176 A.3 Experimental Results and Conclusion 181 Bibliography 183 Abstract 207๋ฐ•

    Line-of-sight-stabilization and tracking control for inertial platforms

    Get PDF
    Nowadays, line of sight stabilization and tracking using inertially stabilized platforms (ISPs) are still challenging engineering problems. With a growing demand for high-precision applications, more involved control techniques are necessary to achieve better performance. In this work, kinematic and dynamic models for a three degrees-of-freedom ISP are presented. These models are based in the vehicle-manipulator system (VMS) framework for modeling of robot manipulators operating in a mobile base (vehicles). The dynamic model follows the Euler-Lagrange formulation and is implemented by numeric simulations using the iterative Newton-Euler method. Two distinct control strategies for both stabilization and tracking are proposed: (i) computed torque control and (ii) sliding mode control using the recent SuperTwisting Algorithm (STA) combined with a High-Order Sliding Mode Observer (HOSMO). Simulations using data from a simulated vessel allow us to compare the performance of the computed torque controllers with respect to the commonly used P-PI controller. Besides, the results obtained for the sliding mode controllers indicate that the Super-Twisting algorithm offers ideal robustness to the vehicle motion disturbances and also to parametric uncertainties, resulting in a stabilization precision of approximately 0,8 mrad.Hoje em dia, a estabilizaรงรฃo e o rastreamento da linha de visada utilizando plataformas inerciais continuam a constituir desafiadores problemas de engenharia. Com a crescente demanda por aplicaรงรตes de alta precisรฃo, tรฉcnicas de controle complexas sรฃo necessรกrias para atingir melhor desempenho. Neste trabalho, modelos cinemรกticos e dinรขmicos para uma plataforma mecรขnica de estabilizaรงรฃo inercial sรฃo apresentados. Tais modelos se baseiam no formalismo para sistemas veรญculo-manipulator para a modelagem de manipuladores robรณticos operando em uma base mรณvel (veรญculo). O modelo dinรขmico apresentado segue a formulaรงรฃo analรญtica de Euler-Lagrange e รฉ implementado em simulaรงรตes numรฉricas atravรฉs do mรฉtodo iterativo de Newton-Euler. Duas estratรฉgias de controle distintas para estabilizaรงรฃo e rastreamento sรฃo propostas: (i) controle por torque-computado e (ii) controle por modos deslizantes utilizando o recente algoritmo Super-Twisting combinado com um observador baseado em modos deslizantes de alta ordem. Simulaรงรตes utilizando dados de movimentaรงรฃo de um navio simulado permitem comparar o desempenho dos controladores por torque computado em relaรงรฃo a um tipo comum de controlador linear utilizado na literatura: o P-PI. Alรฉm disso, os resultados obtidos para o controle por modos deslizantes permitem concluir que o algoritmo Super-Twisting apresenta rejeiรงรฃo ideal a perturbaรงรตes provenientes do movimento do veรญculo e tambรฉm a incertezas paramรฉtricas, resultando em precisรฃo de estabilizaรงรฃo de aproximadamente 0,8 mrad

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Reviewing high-level control techniques on robot-assisted upper-limb rehabilitation

    Get PDF
    This paper presents a comprehensive review of high-level control techniques for upper-limb robotic training. It aims to compare and discuss the potentials of these different control algorithms, and specify future research direction. Included studies mainly come from selected papers in four review articles. To make selected studies complete and comprehensive, especially some recently-developed upper-limb robotic devices, a search was further conducted in IEEE Xplore, Google Scholar, Scopus and Web of Science using keywords (โ€˜upper limb*โ€™ or โ€˜upper body*โ€™) and (โ€˜rehabilitation*โ€™ or โ€˜treatment*โ€™) and (โ€˜robot*โ€™ or โ€˜device*โ€™ or โ€˜exoskeleton*โ€™). The search is limited to English-language articles published between January 2013 and December 2017. Valuable references in related publications were also screened. Comparative analysis shows that high-level interaction control strategies can be implemented in a range of methods, mainly including impedance/admittance based strategies, adaptive control techniques, and physiological signal control. Even though the potentials of existing interactive control strategies have been demonstrated, it is hard to identify the one leading to maximum encouragement from human users. However, it is reasonable to suggest that future studies should combine different control strategies to be application specific, and deliver appropriate robotic assistance based on physical disability levels of human users

    Hybrid walking therapy with fatigue management for spinal cord injured individuals

    Get PDF
    In paraplegic individuals with upper motor neuron lesions the descending path for signals from central nervous system to the muscles are lost or diminished. Motor neuroprosthesis based on electrical stimulation can be applied to induce restoration of motor function in paraplegic patients. Furthermore, electrical stimulation of such motor neuroprosthesis can be more efficiently managed and delivered if combined with powered exoskeletons that compensate the limited force in the stimulated muscles and bring additional support to the human body. Such hybrid overground gait therapy is likely to be more efficient to retrain the spinal cord in incomplete injuries than conventional, robotic or neuroprosthetic approaches. However, the control of bilateral joints is difficult due to the complexity, non-linearity and time-variance of the system involved. Also, the effects of muscle fatigue and spasticity in the stimulated muscles complicate the control task. Furthermore, a compliant joint actuation is required to allow for a cooperative control approach that is compatible with the assist-as-needed rehabilitation paradigm. These were direct motivations for this research. The overall aim was to generate the necessary knowledge to design a novel hybrid walking therapy with fatigue management for incomplete spinal cord injured subjects. Research activities were conducted towards the establishment of the required methods and (hardware and software) systems that required to proof the concept with a pilot clinical evaluation. Speciffically, a compressive analysis of the state of the art on hybrid exoskeletons revealed several challenges which were tackled by this dissertation. Firstly, assist-as-needed was implemented over the basis of a compliant control of the robotic exoskeleton and a closed-loop control of the neuroprosthesis. Both controllers are integrated within a hybrid-cooperative strategy that is able to balance the assistance of the robotic exoskeleton regarding muscle performance. This approach is supported on the monitoring of the leg-exoskeleton physical interaction. Thus the fatigue caused by neuromuscular stimulation was also subject of speciffic research. Experimental studies were conducted with paraplegic patients towards the establishment of an objective criteria for muscle fatigue estimation and management. The results of these studies were integrated in the hybrid-cooperative controller in order to detect and manage muscle fatigue while providing walking therapy. Secondly closed-loop control of the neuroprosthesis was addressed in this dissertation. The proposed control approach allowed to tailor the stimulation pattern regarding the speciffic residual motor function of the lower limb of the patient. In order to uncouple the closed-loop control from muscle performance monitoring, the hybrid-cooperative control approach implemented a sequential switch between closed-loop and open-loop control of the neuroprosthesis. Lastly, a comprehensive clinical evaluation protocol allowed to assess the impact of the hybrid walking therapy on the gait function of a sample of paraplegic patients. Results demonstrate that: 1) the hybrid controller adapts to patient residual function during walking, 2) the therapy is tolerated by patients, and 3) the walking function of patients was improved after participating in the study. In conclusion, the hybrid walking therapy holds potential for rehabilitate walking in motor incomplete paraplegic patients, guaranteeing further research on this topic. This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovaciรณn, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010). Within these research projects, cutting-edge research is conducted in the eld of hybrid actuation and control for rehabilitation of motor disorders. This dissertation constitutes proof-of concept of the hybrid walking therapy for paraplegic individuals for these projects. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------En individuos paraplรฉjicos con lesiones de la motoneurona superior, la conexiรณn descendente para la transmisiรณn de las seรฑales del sistema nervioso central a los mรบsculos se ve perdida o disminuida. Las neuroprรณtesis motoras basadas en la estimulaciรณn elรฉctrica pueden ser aplicadas para inducir la restauraciรณn de la funciรณn motora en pacientes con paraplejia. Ademรกs, la estimulaciรณn elรฉctrica de tales neuroprรณtesis motoras se puede gestionar y aplicar de manera mรกs eficiente mediante la combinaciรณn con exoesqueletos robรณticos que compensen la generaciรณn limitada de fuerza de los mรบsculos estimulados, y proporcionen soporte adicional para el cuerpo. Dicha terapia de marcha ambulatoria puede ser probablemente mรกs eficaz para la recuperaciรณn de las funciones de la mรฉdula espinal en lesiones incompletas que las terapias convencionales, robรณticas o neuroprotesicas. Sin embargo, el control bilateral de las articulaciones es difรญcil debido a la complejidad, no-linealidad y la variaciรณn con el tiempo de las caracterรญsticas del sistema en cuestiรณn. Ademรกs, la fatiga muscular y la espasticidad de los mรบsculos estimulados complican la tarea de control. Por otra parte, se requiere una actuaciรณn robรณtica modulable para permitir un enfoque de control cooperativo compatible con el paradigma de rehabilitaciรณn de asistencia bajo demanda. Todo lo anterior constituyรณ las motivaciones directas para esta investigaciรณn. El objetivo general fue generar el conocimiento necesario para diseรฑar un nuevo tratamiento hรญbrido de rehabilitaciรณn marcha con gestiรณn de la fatiga para lesionados medulares incompletos. Se llevaron a cabo actividades de investigaciรณn para el establecimiento de los mรฉtodos necesarios y los sistemas (hardware y software) requeridos para probar el concepto mediante una evaluaciรณn clรญnica piloto. Especรญficamente, un anรกlisis del estado de la tรฉcnica sobre exoesqueletos hรญbridos revelรณ varios retos que fueron abordados en esta tesis. En primer lugar, el paradigma de asistencia bajo demanda se implementรณ sobre la base de un control adaptable del exoesqueleto robรณtico y un control en lazo cerrado de la neuroprรณtesis. Ambos controladores estรกn integrados dentro de una estrategia hรญbrida cooperativa que es capaz de equilibrar la asistencia del exoesqueleto robรณtico en relaciรณn con el rendimiento muscular. Este enfoque se soporta sobre la monitorizaciรณn de la interacciรณn fรญsica entre la pierna y el exoesqueleto. Por tanto, la fatiga causada por la estimulaciรณn neuromuscular tambiรฉn fue objeto de una investigaciรณn especรญfica. Se realizaron estudios experimentales con pacientes paraplรฉjicos para el establecimiento de un criterio objetivo para la detecciรณn y la gestiรณn de la fatiga muscular. Los resultados de estos estudios fueron integrados en el controlador hรญbrido-cooperativo con el fin de detectar y gestionar la fatiga muscular mientras se realiza la terapia hรญbrida de rehabilitaciรณn de la marcha. En segundo lugar, el control en lazo cerrado de la neuroprรณtesis fue abordado en esta tesis. El mรฉtodo de control propuesto permite adaptar el patrรณn de estimulaciรณn en relaciรณn con la funcionalidad residual especรญfica de la extremidad inferior del paciente. Sin embargo, con el n de desacoplar el control en lazo cerrado de la monitorizaciรณn del rendimiento muscular, el enfoque de control hรญbrido-cooperativo incorpora una conmutaciรณn secuencial entre el control en lazo cerrado y en lazo abierto de la neuropr otesis. Por รบltimo, un protocolo de evaluaciรณn clรญnica global permitido evaluar el impacto de la terapia hรญbrida de la marcha en la funciรณn de la marcha de una muestra de pacientes paraplรฉjicos. Los resultados demuestran que: 1) el controlador hรญbrido se adapta a la funciรณn residual del paciente durante la marcha, 2) la terapia es tolerada por los pacientes, y 3) la funci on de marcha del paciente mejora despu es de participar en el estudio. En conclusiรณn, la terapia de hรญbrida de la marcha alberga un potencial para la rehabilitaciรณn de la marcha en pacientes paraplรฉjicos incompletos motor, garantizando realizar investigaciรณn mรกs profunda sobre este tema. Esta tesis se enmarca dentro de los dos proyectos de investigaciรณn: REHABOT (Ministerio de Ciencia e Innovaciรณn, referencia DPI2008-06772-C03-02) y HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, referencia CSD2009-00067 CONSOLIDER INGENIO 2010). Dentro de estos proyectos se lleva a cabo investigaciรณn de vanguardia en el campo de la actuaciรณn y el control hรญbrido de la combinaciรณn robot-neuroprรณtesis para la rehabilitaciรณn de trastornos motores. Esta tesis constituye la prueba de concepto de la terapia de hรญbrida de la marcha para individuos paraplรฉjicos en estos proyectos.This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovaciรณn, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Application of reinforcement learning in robotic disassembly operations

    Get PDF
    Disassembly is a key step in remanufacturing. To increase the level of automation in disassembly, it is necessary to use robots that can learn to perform new tasks by themselves rather than having to be manually reprogrammed every time there is a different job. Reinforcement Learning (RL) is a machine learning technique that enables the robots to learn by trial and error rather than being explicitly programmed. In this thesis, the application of RL to robotic disassembly operations has been studied. Firstly, a literature review on robotic disassembly and the application of RL in contact-rich tasks has been conducted in Chapter 2. To physically implement RL in robotic disassembly, the task of removing a bolt from a door chain lock has been selected as a case study, and a robotic training platform has been built for this implementation in Chapter 3. This task is chosen because it can demonstrate the capabilities of RL to pathfinding and dealing with reaction forces without explicitly specifying the target coordinates or building a force feedback controller. The robustness of the learned policies against the imprecision of the robot is studied by a proposed method to actively lower the precision of the robots. It has been found that the robot can learn successfully even when the precision is lowered to as low as ยฑ0.5mm. This work also investigates whether learned policies can be transferred among robots with different precisions. Experiments have been performed by training a robot with a certain precision on a task and replaying the learned skills on a robot with different precision. It has been found that skills learned by a low-precision robot can perform better on a robot with higher precision, and skills learned by a high-precision robot have worse performance on robots with lower precision, as it is suspected that the policies trained on high-precision robots have been overfitted to the precise robots. In Chapter 4, the approach of using a digital-twin-assisted simulation-to-reality transfer to accelerate the learning performance of the RL has been investigated. To address the issue of identifying the system parameters, such as the stiffness and damping of the contact models, that are difficult to measure directly but are critical for building the digital twins of the environments, system identification method is used to minimise the discrepancy between the response generated from the physical and digital environments by using the Bees Algorithm. It is found that the proposed method effectively increases RL's learning performance. It is also found that it is possible to have worse performance with the sim-to-real transfer if the reality gap is not effectively addressed. However, increasing the size of the dataset and optimisation cycles have been demonstrated to reduce the reality gap and lead to successful sim-to-real transfers. Based on the training task described in Chapters 4 and 5, a full factorial study has been conducted to identify patterns when selecting the appropriate hyper-parameters when applying the Deep Deterministic Policy Gradient (DDPG) algorithm to the robotic disassembly task. Four hyper-parameters that directly influence the decision-making Artificial Neural Network (ANN) update have been chosen for the study, with three levels assigned to each hyper-parameter. After running 241 simulations, it is found that for this particular task, the learning rates of the actor and critic networks are the most influential hyper-parameters, while the batch size and soft update rate have relatively limited influence. Finally, the thesis is concluded in Chapter 6 with a summary of findings and suggested future research directions

    Switching control systems and their design automation via genetic algorithms

    Get PDF
    The objective of this work is to provide a simple and effective nonlinear controller. Our strategy involves switching the underlying strategies in order to maintain a robust control. If a disturbance moves the system outside the region of stability or the domain of attraction, it will be guided back onto the desired course by the application of a different control strategy. In the context of switching control, the common types of controller present in the literature are based either on fuzzy logic or sliding mode. Both of them are easy to implement and provide efficient control for non-linear systems, their actions being based on the observed input/output behaviour of the system. In the field of fuzzy logic control (FLC) using error feedback variables there are two main problems. The first is the poor transient response (jerking) encountered by the conventional 2-dimensional rule-base fuzzy PI controller. Secondly, conventional 3-D rule-base fuzzy PID control design is both computationally intensive and suffers from prolonged design times caused by a large dimensional rule-base. The size of the rule base will increase exponentially with the increase of the number of fuzzy sets used for each input decision variable. Hence, a reduced rule-base is needed for the 3-term fuzzy controller. In this thesis a direct implementation method is developed that allows the size of the rule-base to be reduced exponentially without losing the features of the PID structure. This direct implementation method, when applied to the reduced rule-base fuzzy PI controller, gives a good transient response with no jerking
    corecore