1,847 research outputs found

    Recommender systems and their ethical challenges

    Get PDF
    This article presents the first, systematic analysis of the ethical challenges posed by recommender systems through a literature review. The article identifies six areas of concern, and maps them onto a proposed taxonomy of different kinds of ethical impact. The analysis uncovers a gap in the literature: currently user-centred approaches do not consider the interests of a variety of other stakeholders—as opposed to just the receivers of a recommendation—in assessing the ethical impacts of a recommender system

    Visualization for Recommendation Explainability: A Survey and New Perspectives

    Full text link
    Providing system-generated explanations for recommendations represents an important step towards transparent and trustworthy recommender systems. Explainable recommender systems provide a human-understandable rationale for their outputs. Over the last two decades, explainable recommendation has attracted much attention in the recommender systems research community. This paper aims to provide a comprehensive review of research efforts on visual explanation in recommender systems. More concretely, we systematically review the literature on explanations in recommender systems based on four dimensions, namely explanation goal, explanation scope, explanation style, and explanation format. Recognizing the importance of visualization, we approach the recommender system literature from the angle of explanatory visualizations, that is using visualizations as a display style of explanation. As a result, we derive a set of guidelines that might be constructive for designing explanatory visualizations in recommender systems and identify perspectives for future work in this field. The aim of this review is to help recommendation researchers and practitioners better understand the potential of visually explainable recommendation research and to support them in the systematic design of visual explanations in current and future recommender systems.Comment: Updated version Nov. 2023, 36 page

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Explainable software systems: from requirements analysis to system evaluation

    Get PDF
    The growing complexity of software systems and the influence of software-supported decisions in our society sparked the need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects. However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by proposing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for explainable systems. These artifacts should support software and requirements engineers in understanding the definition of explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the identification of methods and metrics for the evaluation of the implemented requirements

    Explainable software systems: from requirements analysis to system evaluation

    Get PDF
    The growing complexity of software systems and the influence of software-supported decisions in our society sparked the need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects. However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by proposing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for explainable systems. These artifacts should support software and requirements engineers in understanding the definition of explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the identification of methods and metrics for the evaluation of the implemented requirements

    A SYSTEMATIC REVIEW OF COMPUTATIONAL METHODS IN AND RESEARCH TAXONOMY OF HOMOPHILY IN INFORMATION SYSTEMS

    Get PDF
    Homophily is both a principle for social group formation with like-minded people as well as a mechanism for social interactions. Recent years have seen a growing body of management research on homophily particularly on large-scale social media and digital platforms. However, the predominant traditional qualitative and quantitative methods employed face validity issues and/or are not well-suited for big social data. There are scant guidelines for applying computational methods to specific research domains concerning descriptive patterns, explanatory mechanisms, or predictive indicators of homophily. To fill this research gap, this paper offers a structured review of the emerging literature on computational social science approaches to homophily with a particular emphasis on their relevance, appropriateness, and importance to information systems research. We derive a research taxonomy for homophily and offer methodological reflections and recommendations to help inform future research

    Considering temporal aspects in recommender systems: a survey

    Get PDF
    Under embargo until: 2023-07-04The widespread use of temporal aspects in user modeling indicates their importance, and their consideration showed to be highly effective in various domains related to user modeling, especially in recommender systems. Still, past and ongoing research, spread over several decades, provided multiple ad-hoc solutions, but no common understanding of the issue. There is no standardization and there is often little commonality in considering temporal aspects in different applications. This may ultimately lead to the problem that application developers define ad-hoc solutions for their problems at hand, sometimes missing or neglecting aspects that proved to be effective in similar cases. Therefore, a comprehensive survey of the consideration of temporal aspects in recommender systems is required. In this work, we provide an overview of various time-related aspects, categorize existing research, present a temporal abstraction and point to gaps that require future research. We anticipate this survey will become a reference point for researchers and practitioners alike when considering the potential application of temporal aspects in their personalized applications.acceptedVersio
    • …
    corecore