883 research outputs found

    Systematic methods for the computation of the directional fields and singular points of fingerprints

    Get PDF
    The first subject of the paper is the estimation of a high resolution directional field of fingerprints. Traditional methods are discussed and a method, based on principal component analysis, is proposed. The method not only computes the direction in any pixel location, but its coherence as well. It is proven that this method provides exactly the same results as the "averaged square-gradient method" that is known from literature. Undoubtedly, the existence of a completely different equivalent solution increases the insight into the problem's nature. The second subject of the paper is singular point detection. A very efficient algorithm is proposed that extracts singular points from the high-resolution directional field. The algorithm is based on the Poincare index and provides a consistent binary decision that is not based on postprocessing steps like applying a threshold on a continuous resemblance measure for singular points. Furthermore, a method is presented to estimate the orientation of the extracted singular points. The accuracy of the methods is illustrated by experiments on a live-scanned fingerprint databas

    Curved Gabor Filters for Fingerprint Image Enhancement

    Full text link
    Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison to state-of-the-art enhancement methods

    A technique to improve ridge flows of fingerprint orientation fields estimation

    Get PDF
    An accurate estimated fingerprint orientation fields is a significant step for detection of singular points. Gradient-based methods are frequently used for estimating orientation fields but those methods are sensitive to noise. Fingerprints that perfect quality are seldom. They may be corrupted and degraded due to impression conditions or variations on skin. Enhancement of ridge flows improved the structure of orientation fields and hence increased the number of true singular points thereby conducting the overall performance of the classification process. In this paper, we provided discussion on the technique and implementation to improve local ridge flows of fingerprint orientation fields. That main technique have four steps; firstly, fingerprint segmentation; secondly, identification of noise areas and marking; thirdly, estimation of fingerprint orientation fields, and finally, enhancement of ridge flows using minimum variance of the cross centre block direction in squared gradients. A standard fingerprint database is used for testing of proposed technique to verify the tier of effectivity of algorithm. The experimental results suggest that our enhanced algorithm achieves visibly better ridge flows compare to other methods
    corecore