5,028 research outputs found

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    A Systematic Review of Algorithms with Linear-time Behaviour to Generate Delaunay and Voronoi Tessellations

    Get PDF
    Triangulations and tetrahedrizations are important geometrical discretization procedures applied to several areas, such as the reconstruction of surfaces and data visualization. Delaunay and Voronoi tessellations are discretization structures of domains with desirable geometrical properties. In this work, a systematic review of algorithms with linear-time behaviour to generate 2D/3D Delaunay and/or Voronoi tessellations is presented

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size

    Correct-by-Construction Development of Dynamic Topology Control Algorithms

    Get PDF
    Wireless devices are influencing our everyday lives today and will even more so in the future. A wireless sensor network (WSN) consists of dozens to hundreds of small, cheap, battery-powered, resource-constrained sensor devices (motes) that cooperate to serve a common purpose. These networks are applied in safety- and security-critical areas (e.g., e-health, intrusion detection). The topology of such a system is an attributed graph consisting of nodes representing the devices and edges representing the communication links between devices. Topology control (TC) improves the energy consumption behavior of a WSN by blocking costly links. This allows a mote to reduce its transmission power. A TC algorithm must fulfill important consistency properties (e.g., that the resulting topology is connected). The traditional development process for TC algorithms only considers consistency properties during the initial specification phase. The actual implementation is carried out manually, which is error prone and time consuming. Thus, it is difficult to verify that the implementation fulfills the required consistency properties. The problem becomes even more severe if the development process is iterative. Additionally, many TC algorithms are batch algorithms, which process the entire topology, irrespective of the extent of the topology modifications since the last execution. Therefore, dynamic TC is desirable, which reacts to change events of the topology. In this thesis, we propose a model-driven correct-by-construction methodology for developing dynamic TC algorithms. We model local consistency properties using graph constraints and global consistency properties using second-order logic. Graph transformation rules capture the different types of topology modifications. To specify the control flow of a TC algorithm, we employ the programmed graph transformation language story-driven modeling. We presume that local consistency properties jointly imply the global consistency properties. We ensure the fulfillment of the local consistency properties by synthesizing weakest preconditions for each rule. The synthesized preconditions prohibit the application of a rule if and only if the application would lead to a violation of a consistency property. Still, this restriction is infeasible for topology modifications that need to be executed in any case. Therefore, as a major contribution of this thesis, we propose the anticipation loop synthesis algorithm, which transforms the synthesized preconditions into routines that anticipate all violations of these preconditions. This algorithm also enables the correct-by-construction runtime reconfiguration of adaptive WSNs. We provide tooling for both common evaluation steps. Cobolt allows to evaluate the specified TC algorithms rapidly using the network simulator Simonstrator. cMoflon generates embedded C code for hardware testbeds that build on the sensor operating system Contiki

    A sheaf-theoretic approach to pattern matching and related problems

    Get PDF
    AbstractWe present a general theory of pattern matching by adopting an extensional, geometric view of patterns. Representing the geometry of the pattern via a Grothendieck topology, the extension of the matching relation for a constant target and varying pattern forms a sheaf. We derive a generalized version of the Knuth-Morris-Pratt string-matching algorithm by gradually converting this extensional description into an intensional description, i.e., an algorithm. The generality of this approach is illustrated by briefly considering other applications: Earley's algorithm for parsing, Waltz filtering for scene analysis, matching modulo commutativity, and the n-queens problem
    • …
    corecore