2,546 research outputs found

    Drawing Parallels between Heuristics and Dynamic Programming

    Get PDF

    Designing a hierarchical fuzzy logic controller using the differential evolution approach

    Get PDF
    In conventional fuzzy logic controllers, the computational complexity increases with the dimensions of the system variables; the number of rules increases exponentially as the number of system variables increases. Hierarchical fuzzy logic controllers ( HFLC) have been introduced to reduce the number of rules to a linear function of system variables. However, the use of hierarchical fuzzy logic controllers raises new issues in the automatic design of controllers, namely the coordination of outputs of sub- controllers at lower levels of the hierarchy. In this paper, a method is described for the automatic design of an HFLC using an evolutionary algorithm called differential evolution ( DE). The aim in this paper is to develop a sufficiently versatile method that can be applied to the design of any HFLC architecture. The feasibility of the method is demonstrated by developing a two- stage HFLC for controlling a cart - pole with four state variables. The merits of the method are automatic generation of the HFLC and simplicity as the number of parameters used for encoding the problem are greatly reduced as compared to conventional methods

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Evaluation of Pull Production Control Strategies Under Uncertainty: An Integrated Fuzzy Ahp-Topsis Approach

    Get PDF
    Purpose: Just-In-Time (JIT) production has continuously been considered by industrial practitioners and researchers as a leading strategy for the yet popular Lean production. Pull Production Control Policies (PPCPs) are the major enablers of JIT that locally control the level of inventory by authorizing the production in each station. Aiming to improve the PPCPs, three authorization mechanisms: Kanban, constant-work-in-process (ConWIP), and a hybrid system, are evaluated by considering uncertainty. Design/methodology/approach: Multi-Criteria Decision Making (MCDM) methods are successful in evaluating alternatives with respect to several objectives. The proposed approach of this study applies the fuzzy set theory together with an integrated Analytical Hierarchy Process (AHP) and a Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method. Findings: The study finds that hybrid Kanban-ConWIP pull production control policies have a better performance in controlling the studied multi-layer multi-stage manufacturing and assembly system. Practical implications: To examine the approach a real case from automobile electro-mechanical part production industry is studied. The production system consists of multiple levels of manufacturing, feeding a multi-stage assembly line with stochastic processing times to satisfy the changing demand. Originality/value: This study proposes the integrated Kanban-ConWIP hybrid pull control policies and implements several alternatives on a multi-stage and multi-layer manufacturing and assembly production system. An integrated Fuzzy AHP TOPSIS method is developed to evaluate the alternatives with respect to several JIT criteriaPeer Reviewe

    Do UK universities communicate their brands effectively through their websites?

    Get PDF
    This paper attempts to explore the effectiveness of UK universities’ websites. The area of branding in higher education has received increasing academic investigation, but little work has researched how universities demonstrate their brand promises through their websites. The quest to differentiate through branding can be challenging in the university context, however. It is argued that those institutions that have a strong distinctive image will be in a better position to face a changing future. Employing a multistage methodology, the web pages of twenty UK universities were investigated by using a combination of content and multivariable analysis. Results indicated ‘traditional values’ such as teaching and research were often well communicated in terms of online brand but ‘emotional values’ like social responsibility and the universities’ environments were less consistently communicated, despite their increased topicality. It is therefore suggested that emotional values may offer a basis for possible future online differentiation

    Life Cycle Based Sustainability Assessment And Decision Making For Industrial Systems

    Get PDF
    Increasing concern with the environmental impact resulted from human activities has led to a rising interest in sustainable development that will not only meet the needs of current development but also protect the natural environment without compromising the needs of future generations. This leads to the necessity of a systems approach to decision-making in which economic, environmental and social factors are integrated together to ensure the triple bottom lines of sustainability. Although current studies provide a variety of different methodologies to address sustainability assessment and decision-making, the increasing size and complexity of industrial systems results in the necessity to develop more comprehensive systems approaches to ensure the sustainable development over a long time period for industrial systems. What\u27s more, current research may conduct results based on one or only a few stages of the manufacturing process without considering all the stages of a product’s life. Therefore, the results could be bias and sometimes not feasible for the whole life-cycle. In the meanwhile, life cycle analysis (LCA) which has been widely adopted in a variety of industries does provide an effective approach to evaluate the environmental impact. The lack of life-cycle based economic and social sustainability assessment results in the difficult to conduct more comprehensive sustainability assessment. To address these challenges, three fundamental frameworks are developed in this dissertation, that is, life cycle based sustainability assessment (LCBSA) framework, life cycle based decision-making (LCBDM) framework, and fuzzy dynamic programming (FDP) based long-term multistage sustainable development framework. LCBSA can offer a profound insight of status quo of the sustainability performance over the whole life cycle. LCSA is then applied to assess the industrial system of automotive coating manufacturing process from raw material extraction, material manufacturing, product manufacturing to the recycle and disposal stage. The following LCBDM framework could then prioritize the sustainability improvement urgency and achieve comprehensive sustainable development by employing a two-phase decision-making methodology. In addition, FDP based long-term multistage sustainable development framework offers a comprehensive way to ascertain the achievement of long time sustainable development goal of complex and dynamic industrial systems by combining decision-making and sustainability assessment together

    Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

    Full text link
    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature

    A layered control architecture for mobile robot navigation

    Get PDF
    A Thesis submitted to the University Research Degree Committee in fulfillment ofthe requirements for the degree of DOCTOR OF PHILOSOPHY in RoboticsThis thesis addresses the problem of how to control an autonomous mobile robot navigation in indoor environments, in the face of sensor noise, imprecise information, uncertainty and limited response time. The thesis argues that the effective control of autonomous mobile robots can be achieved by organising low level and higher level control activities into a layered architecture. The low level reactive control allows the robot to respond to contingencies quickly. The higher level control allows the robot to make longer term decisions and arranges appropriate sequences for a task execution. The thesis describes the design and implementation of a two layer control architecture, a task template based sequencing layer and a fuzzy behaviour based low level control layer. The sequencing layer works at the pace of the higher level of abstraction, interprets a task plan, mediates and monitors the controlling activities. While the low level performs fast computation in response to dynamic changes in the real world and carries out robust control under uncertainty. The organisation and fusion of fuzzy behaviours are described extensively for the construction of a low level control system. A learning methodology is also developed to systematically learn fuzzy behaviours and the behaviour selection network and therefore solve the difficulties in configuring the low level control layer. A two layer control system has been implemented and used to control a simulated mobile robot performing two tasks in simulated indoor environments. The effectiveness of the layered control and learning methodology is demonstrated through the traces of controlling activities at the two different levels. The results also show a general design methodology that the high level should be used to guide the robot's actions while the low level takes care of detailed control in the face of sensor noise and environment uncertainty in real time
    corecore