521 research outputs found

    Supporting the automated generation of modular product line safety cases

    Get PDF
    Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires the traceability of SPL variation across design, including variation in safety analysis and safety cases. In this paper, we propose a method and tool to support the automatic generation of modular SPL safety case architectures from the information provided by SPL feature modeling and model-based safety analysis. The Goal Structuring Notation (GSN) safety case modeling notation and its modular extensions supported by the D-Case Editor were used to implement the method in an automated tool support. The tool was used to generate a modular safety case for an automotive Hybrid Braking System SPL

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    A PRISMA-driven systematic mapping study on system assurance weakeners

    Full text link
    Context: An assurance case is a structured hierarchy of claims aiming at demonstrating that a given mission-critical system supports specific requirements (e.g., safety, security, privacy). The presence of assurance weakeners (i.e., assurance deficits, logical fallacies) in assurance cases reflects insufficient evidence, knowledge, or gaps in reasoning. These weakeners can undermine confidence in assurance arguments, potentially hindering the verification of mission-critical system capabilities. Objectives: As a stepping stone for future research on assurance weakeners, we aim to initiate the first comprehensive systematic mapping study on this subject. Methods: We followed the well-established PRISMA 2020 and SEGRESS guidelines to conduct our systematic mapping study. We searched for primary studies in five digital libraries and focused on the 2012-2023 publication year range. Our selection criteria focused on studies addressing assurance weakeners at the modeling level, resulting in the inclusion of 39 primary studies in our systematic review. Results: Our systematic mapping study reports a taxonomy (map) that provides a uniform categorization of assurance weakeners and approaches proposed to manage them at the modeling level. Conclusion: Our study findings suggest that the SACM (Structured Assurance Case Metamodel) -- a standard specified by the OMG (Object Management Group) -- may be the best specification to capture structured arguments and reason about their potential assurance weakeners

    Understanding and Evaluating Assurance Cases

    Get PDF
    Assurance cases are a method for providing assurance for a system by giving an argument to justify a claim about the system, based on evidence about its design, development, and tested behavior. In comparison with assurance based on guidelines or standards (which essentially specify only the evidence to be produced), the chief novelty in assurance cases is provision of an explicit argument. In principle, this can allow assurance cases to be more finely tuned to the specific circumstances of the system, and more agile than guidelines in adapting to new techniques and applications. The first part of this report (Sections 1-4) provides an introduction to assurance cases. Although this material should be accessible to all those with an interest in these topics, the examples focus on software for airborne systems, traditionally assured using the DO-178C guidelines and its predecessors. A brief survey of some existing assurance cases is provided in Section 5. The second part (Section 6) considers the criteria, methods, and tools that may be used to evaluate whether an assurance case provides sufficient confidence that a particular system or service is fit for its intended use. An assurance case cannot provide unequivocal "proof" for its claim, so much of the discussion focuses on the interpretation of such less-than-definitive arguments, and on methods to counteract confirmation bias and other fallibilities in human reasoning
    • …
    corecore