1,791 research outputs found

    OntONeo: The Obstetric and Neonatal Ontology

    Get PDF
    This paper presents the Obstetric and Neonatal Ontology (OntONeo). This ontology has been created to provide a consensus representation of salient electronic health record (EHR) data and to serve interoperability of the associated data and information systems. More generally, it will serve interoperability of clinical and translational data, for example deriving from genomics disciplines and from clinical trials. Interoperability of EHR data is important to ensuring continuity of care during the prenatal and postnatal periods for both mother and child. As a strategy to advance such interoperability we use an approach based on ontological realism and on the ontology development principles of the Open Biomedical Ontologies Foundry, including reuse of reference ontologies wherever possible. We describe the structure and coverage domain of OntONeo and the process of creating and maintaining the ontology

    Horizontal Integration of Warfighter Intelligence Data: A Shared Semantic Resource for the Intelligence Community

    Get PDF
    We describe a strategy that is being used for the horizontal integration of warfighter intelligence data within the framework of the US Army’s Distributed Common Ground System Standard Cloud (DSC) initiative. The strategy rests on the development of a set of ontologies that are being incrementally applied to bring about what we call the ‘semantic enhancement’ of data models used within each intelligence discipline. We show how the strategy can help to overcome familiar tendencies to stovepiping of intelligence data, and describe how it can be applied in an agile fashion to new data resources in ways that address immediate needs of intelligence analysts

    NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

    Get PDF
    Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.Comment: 29 pages, 8 figures, 11 table

    Enabling Web-scale data integration in biomedicine through Linked Open Data

    Get PDF
    The biomedical data landscape is fragmented with several isolated, heterogeneous data and knowledge sources, which use varying formats, syntaxes, schemas, and entity notations, existing on the Web. Biomedical researchers face severe logistical and technical challenges to query, integrate, analyze, and visualize data from multiple diverse sources in the context of available biomedical knowledge. Semantic Web technologies and Linked Data principles may aid toward Web-scale semantic processing and data integration in biomedicine. The biomedical research community has been one of the earliest adopters of these technologies and principles to publish data and knowledge on the Web as linked graphs and ontologies, hence creating the Life Sciences Linked Open Data (LSLOD) cloud. In this paper, we provide our perspective on some opportunities proffered by the use of LSLOD to integrate biomedical data and knowledge in three domains: (1) pharmacology, (2) cancer research, and (3) infectious diseases. We will discuss some of the major challenges that hinder the wide-spread use and consumption of LSLOD by the biomedical research community. Finally, we provide a few technical solutions and insights that can address these challenges. Eventually, LSLOD can enable the development of scalable, intelligent infrastructures that support artificial intelligence methods for augmenting human intelligence to achieve better clinical outcomes for patients, to enhance the quality of biomedical research, and to improve our understanding of living systems

    Controlled vocabularies and semantics in systems biology

    Get PDF
    The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously. Ontologies are one of the tools frequently used for this purpose. We describe here three ontologies created specifically to address the needs of the systems biology community. The Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of systems biology models, their characterization and interrelationships. The Terminology for the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general systems behavior. The provision of semantic information extends a model's longevity and facilitates its reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed decisions on subsequent simulation experiments

    Performance assessment of ontology matching systems for FAIR data

    Get PDF
    © The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible, Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus, creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we present a method for analyzing top-level classes to improve precision. Results: We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems (AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and 0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the mappings’ classes belonged to top-level classes that matched. Conclusions: Our findings show that the included ontology matching systems automatically produced mappings that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising when no reference alignments are available. All in all, the systems show potential to be implemented as part of an ontology matching service for querying FAIR data. Future research should focus on developing methods for the evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem

    Bottom-Up Modeling of Permissions to Reuse Residual Clinical Biospecimens and Health Data

    Full text link
    Consent forms serve as evidence of permissions granted by patients for clinical procedures. As the recognized value of biospecimens and health data increases, many clinical consent forms also seek permission from patients or their legally authorized representative to reuse residual clinical biospecimens and health data for secondary purposes, such as research. Such permissions are also granted by the government, which regulates how residual clinical biospecimens may be reused with or without consent. There is a need for increasingly capable information systems to facilitate discovery, access, and responsible reuse of residual clinical biospecimens and health data in accordance with these permissions. Semantic web technologies, especially ontologies, hold great promise as infrastructure for scalable, semantically interoperable approaches in healthcare and research. While there are many published ontologies for the biomedical domain, there is not yet ontological representation of the permissions relevant for reuse of residual clinical biospecimens and health data. The Informed Consent Ontology (ICO), originally designed for representing consent in research procedures, may already contain core classes necessary for representing clinical consent processes. However, formal evaluation is needed to make this determination and to extend the ontology to cover the new domain. This dissertation focuses on identifying the necessary information required for facilitating responsible reuse of residual clinical biospecimens and health data, and evaluating its representation within ICO. The questions guiding these studies include: 1. What is the necessary information regarding permissions for facilitating responsible reuse of residual clinical biospecimens and health data? 2. How well does the Informed Consent Ontology represent the identified information regarding permissions and obligations for reuse of residual clinical biospecimens and health data? We performed three sequential studies to answer these questions. First, we conducted a scoping review to identify regulations and norms that bear authority or give guidance over reuse of residual clinical biospecimens and health data in the US, the permissions by which reuse of residual clinical biospecimens and health data may occur, and key issues that must be considered when interpreting these regulations and norms. Second, we developed and tested an annotation scheme to identify permissions within clinical consent forms. Lastly, we used these findings as source data for bottom-up modelling and evaluation of ICO for representation of this new domain. We found considerable overlap in classes already in ICO and those necessary for representing permissions to reuse residual clinical biospecimens and health data. However, we also identified more than fifty classes that should be added to or imported into ICO. These efforts provide a foundation for comprehensively representing permissions to reuse residual clinical biospecimens and health data. Such representation fills a critical gap for developing applications which safeguard biospecimen resources and enable querying based on their permissions for use. By modeling information about permissions in an ontology, the heterogeneity of these permissions at a range of levels (e.g., federal regulations, consent forms) can be richly represented using entity-relationship links and embedded rules of inference and inheritance. Furthermore, by developing this content in ICO, missing content will be added to the Open Biological and Biomedical Ontology (OBO) Foundry, enabling use alongside other widely adopted ontologies and providing a valuable resource for biospecimen and information management. These methods may also serve as a model for domain experts to interact with ontology development communities to improve ontologies and address gaps which hinder successful uptake.PHDNursingUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162937/1/eliewolf_1.pd
    corecore