3,708 research outputs found

    When kinases meet mathematics: the systems biology of MAPK signalling

    Get PDF
    The mitogen activated protein kinase/extracellular signal regulated kinase pathway regulates fundamental cellular function such as cell proliferation, survival, differentiation and motility, raising the question how these diverse functions are specified and coordinated. They are encoded through the activation kinetics of the pathway, a multitude of feedback loops, scaffold proteins, subcellular compartmentalisation, and crosstalk with other pathways. These regulatory motifs alone or in combination can generate a multitude of complex behaviour. Systems biology tries to decode this complexity through mathematical modelling and prediction in order to gain a deeper insight into the inner works of signalling networks

    CMOS array design automation techniques

    Get PDF
    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable

    A fast lightstripe rangefinding system with smart VLSI sensor

    Get PDF
    The focus of the research is to build a compact, high performance lightstripe rangefinder using a Very Large Scale Integration (VLSI) smart photosensor array. Rangefinding, the measurement of the three-dimensional profile of an object or scene, is a critical component for many robotic applications, and therefore many techniques were developed. Of these, lightstripe rangefinding is one of the most widely used and reliable techniques available. Though practical, the speed of sampling range data by the conventional light stripe technique is severely limited. A conventional light stripe rangefinder operates in a step-and-repeat manner. A stripe source is projected on an object, a video image is acquired, range data is extracted from the image, the stripe is stepped, and the process repeats. Range acquisition is limited by the time needed to grab the video images, increasing linearly with the desired horizontal resolution. During the acquisition of a range image, the objects in the scene being scanned must be stationary. Thus, the long scene sampling time of step-and-repeat rangefinders limits their application. The fast range sensor proposed is based on the modification of this basic lightstripe ranging technique in a manner described by Sato and Kida. This technique does not require a sampling of images at various stripe positions to build a range map. Rather, an entire range image is acquired in parallel while the stripe source is swept continuously across the scene. Total time to acquire the range image data is independent of the range map resolution. The target rangefinding system will acquire 1,000 100 x 100 point range images per second with 0.5 percent range accuracy. It will be compact and rugged enough to be mounted on the end effector of a robot arm to aid in object manipulation and assembly tasks

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft

    Design study of a low cost civil aviation GPS receiver system

    Get PDF
    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified

    Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories

    Get PDF
    The continuous increase in transistor density based on Moore\u27s Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time

    Low-power Design of a Neuromorphic IC and MICS Transceiver

    Get PDF
    abstract: The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer curves of amplifiers show good agreement with the simulated ones with extracted models from the same process. The accuracy of the current mirror showing inverse operation is within ±15% for the current from 0 to 1.5mA with the power supply from 2.5 to 5.5V. The second part presents a low-power image recognition system with a novel MESFET device fabricated on a CMOS substrate. An analog image recognition system with power consumption of 2.4mW/cell and a response time of 6µs is designed, fabricated and characterized. The experimental results verified the accuracy of the extracted SPICE model of SOS MESFETs. The response times of 4µs and 6µs for one by four and one by eight arrays, respectively, are achieved with the line recognition. Each core cell for both arrays consumes only 2.4mW. The last part presents a CMOS low-power transceiver in MICS band is presented. The LNA core has an integrated mixer in a folded configuration. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. The SRO is used in a wakeup RX for the wake-up signal reception. The all digital frequency-locked loop drives a class AB power amplifier in a transmitter. The sensitivity of -85dBm in the wakeup RX is achieved with the power consumption of 320µW and 400µW at the data rates of 100kb/s and 200kb/s from 1.8V, respectively. The sensitivities of -70dBm and -98dBm in the data-link RX are achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600µW and 1.5mW at 1.2V and 1.8V, respectively.Dissertation/ThesisPh.D. Electrical Engineering 201
    corecore