2,429 research outputs found

    Emotions Detection based on a Single-electrode EEG Device

    Get PDF
    The study of emotions using multiple channels of EEG represents a widespread practice in the field of research related to brain computer interfaces (Brain Computer Interfaces). To date, few studies have been reported in the literature with a reduced number of channels, which when used in the detection of emotions present results that are less accurate than the rest. To detect emotions using an EEG channel and the data obtained is useful for classifying emotions with an accuracy comparable to studies in which there is a high number of channels, is of particular interest in this research framework. This article uses the Neurosky Maindwave device; which has a single electrode to acquire the EEG signal, Matlab software and IBM SPSS Modeler; which process and classify the signals respectively. The accuracy obtained in the detection of emotions in relation to the economic resources of the hardware dedicated to the acquisition of EEG signal is remarkable

    Portable decision support for diagnosis of traumatic brain injury

    Get PDF
    Early detection and diagnosis of Traumatic Brain Injury (TBI) could reduce significantly the death rate and improve the quality of life of the people affected if emergency services are equipped with tools for TBI diagnosis at the place of the accident. This problem is addressed here by proposing a portable decision support system called EmerEEG, which is based on Quantitative Electroencephalography (qEEG). The contributions of the paper are the proposed system concept, architecture and decision support for TBI diagnosis. By the virtue of its easily operable mobile system, the proposed solution for emergency TBI diagnosis provides valuable decision support at a very early stage after an accident, thereby enabling a short response time in critical situations and better prospects for the people affected

    Study of soft materials, flexible electronics, and machine learning for fully portable and wireless brain-machine interfaces

    Get PDF
    Over 300,000 individuals in the United States are afflicted with some form of limited motor function from brainstem or spinal-cord related injury resulting in quadriplegia or some form of locked-in syndrome. Conventional brain-machine interfaces used to allow for communication or movement require heavy, rigid components, uncomfortable headgear, excessive numbers of electrodes, and bulky electronics with long wires that result in greater data artifacts and generally inadequate performance. Wireless, wearable electroencephalograms, along with dry non-invasive electrodes can be utilized to allow recording of brain activity on a mobile subject to allow for unrestricted movement. Additionally, multilayer microfabricated flexible circuits, when combined with a soft materials platform allows for imperceptible wearable data acquisition electronics for long term recording. This dissertation aims to introduce new electronics and training paradigms for brain-machine interfaces to provide remedies in the form of communication and movement for these individuals. Here, training is optimized by generating a virtual environment from which a subject can achieve immersion using a VR headset in order to train and familiarize with the system. Advances in hardware and implementation of convolutional neural networks allow for rapid classification and low-latency target control. Integration of materials, mechanics, circuit and electrode design results in an optimized brain-machine interface allowing for rehabilitation and overall improved quality of life.Ph.D
    • …
    corecore