7 research outputs found

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San JosĂ© (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and MĂĄlaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International ScientiïŹc Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et MĂ©tiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Scattering Processes via Tensor Network Simulations

    Get PDF
    Scattering processes are a crucial ingredient for the investigation of fundamental interactions. The ever-increasing amount of data produced at particle colliders has fuelled recent progresses in the field of scattering amplitudes computation. To date, on the numerical side, the results achieved are mainly based on Monte-Carlo simulations. In this Thesis the problem is attacked with a different approach: a real-time simulation of the dynamics of a 1+1 dimensional quantum field theory is performed, exploiting the powerful tensor network methods from many-body theory. A matrix product state representation of the asymptotic input states is identified, allowing for the preparation of the initial momentum wave packets. This initial state is then evolved and we aim to compute the S-matrix elements from the knowledge of the final state. We focus on a specific fermionic U(1)-gauge model, developing a set of tools which are relevant for a broader class of 1+1 dimensional quantum field theories with global or local symmetries

    A symmetry-based splitting strategy for discretizable distance geometry problems

    Get PDF
    International audienceDiscretizable distance geometry problems consist in a subclass of distance geometry problems where the search space can be discretized and reduced to a tree. Such problems can be tackled by applying a branch-and-prune algorithm, which is able to perform an exhaustive enumeration of the solution set. In this work, we exploit the concept of symmetry in the search tree for isolating subtrees that are explored only one time for improving the algorithm performances. The proposed strategy is based on the idea of dividing an original instance of the problem into sub-instances that can thereafter be solved (almost) independently. We present some computational experiments on a set of artificially generated instances, with exact distances, to validate the theoretical results
    corecore