649 research outputs found

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice

    Get PDF
    Applying the chaos theory for secure digital communications is promising and it is well acknowledged that in such applications the underlying chaotic systems should be carefully chosen. However, the requirements imposed on the chaotic systems are usually heuristic, without theoretic guarantee for the resultant communication scheme. Among all the primitives for secure communications, it is well accepted that (pseudo) random numbers are most essential. Taking the well-studied 2-D coupled map lattice (2D CML) as an example, this article performs a theoretical study toward pseudorandom number generation with the 2D CML. In so doing, an analytical expression of the Lyapunov exponent (LE) spectrum of the 2D CML is first derived. Using the LEs, one can configure system parameters to ensure the 2D CML only exhibits complex dynamic behavior, and then collect pseudorandom numbers from the system orbits. Moreover, based on the observation that least significant bit distributes more evenly in the (pseudo) random distribution, an extraction algorithm E is developed with the property that when applied to the orbits of the 2D CML, it can squeeze uniform bits. In implementation, if fixed-point arithmetic is used in binary format with a precision of z bits after the radix point, E can ensure that the deviation of the squeezed bits is bounded by 2(-z) . Further simulation results demonstrate that the new method not only guides the 2D CML model to exhibit complex dynamic behavior but also generates uniformly distributed independent bits with good efficiency. In particular, the squeezed pseudorandom bits can pass both NIST 800-22 and TestU01 test suites in various settings. This study thereby provides a theoretical basis for effectively applying the 2D CML to secure communications

    Dynamic S-BOX using Chaotic Map for VPN Data Security

    Full text link
    A dynamic SBox using a chaotic map is a cryptography technique that changes the SBox during encryption based on iterations of a chaotic map, adding an extra layer of confusion and security to symmetric encryption algorithms like AES. The chaotic map introduces unpredictability, non-linearity, and key dependency, enhancing the overall security of the encryption process. The existing work on dynamic SBox using chaotic maps lacks standardized guidelines and extensive security analysis, leaving potential vulnerabilities and performance concerns unaddressed. Key management and the sensitivity of chaotic maps to initial conditions are challenges that need careful consideration. The main objective of using a dynamic SBox with a chaotic map in cryptography systems is to enhance the security and robustness of symmetric encryption algorithms. The method of dynamic SBox using a chaotic map involves initializing the SBox, selecting a chaotic map, iterating the map to generate chaotic values, and updating the SBox based on these values during the encryption process to enhance security and resist cryptanalytic attacks. This article proposes a novel chaotic map that can be utilized to create a fresh, lively SBox. The performance assessment of the suggested S resilience Box against various attacks involves metrics such as nonlinearity (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation probability (LP), and differential approximation probability (DP). These metrics help gauge the Box ability to handle and respond to different attack scenarios. Assess the cryptography strength of the proposed S-Box for usage in practical security applications, it is compared to other recently developed SBoxes. The comparative research shows that the suggested SBox has the potential to be an important advancement in the field of data security.Comment: 11 Page

    A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System

    Get PDF
    Funding: This research was jointly supported by the National Natural Science Foundation of China (No. 61004006, http://www.nsfc.gov.cn), China Postdoctoral Science Foundation(No. 2013M530181, http://res.chinapostdoctor.org.cn/BshWeb/index.shtml), the Natural Science Foundation of Henan Province, China (No. 13230010254, http://www.hnkjt.gov.cn/, Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No 14HASTIT042, http://rcloud.edu.cn), the Foundation for University Young Key Teacher Program of Henan Province, China (No. 2011GGJS-025, http://www.haedu.gov.cn/), Shanghai Postdoctoral Scientific Program (No. 13R21410600, http://www.21cnhr.gov.cn/doctorarea/), the Science & Technology Project Plan of Archives Bureau of Henan Province (No. 2012-X-62, http://www.hada.gov.cn/) and the Natural Science Foundation of Educational Committee of Henan Province, China (No. 13A520082, http://www.haedu.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    • …
    corecore