6,032 research outputs found

    Comparison of matroid intersection algorithms for large circuit analysis

    Get PDF
    This paper presents two approaches to symbolic analysis of large analog integrated circuits via simplification during the generation of the symbolic expressions. Both techniques are examined from the point of view of matroid theory. Finally, a new approach which combines the positive features of both approaches is introduced

    An advanced symbolic analyzer for the automatic generation of analog circuit design equations

    Get PDF
    A tool for symbolic analysis of analog integrated circuits is presented featuring accurate simplification, pole/zero extraction, and tools for parametric AC circuit characterization. The program, called ASAP, uses signal flowgraph methods and has been written in C for portability. In its current version, ASAP is able to deal with the complexity levels arising in typical analog building blocks when described by device-level models. The ASAP inputs and outputs, the architecture, and the graphical interface are discussed

    An error-controlled methodology for approximate hierarchical symbolic analysis

    Get PDF
    Limitations of existing approaches for symbolic analysis of large analog circuits are discussed. To address their solution, a new methodology for hierarchical symbolic analysis is introduced. The combination of a hierarchical modeling technique and approximation strategies, comprising circuit reduction, graph-based symbolic solution of circuit equations and matrix-based error control, provides optimum results in terms of speech and quality of results.European Commission ESPRIT 21812Comisión Interministerial de Ciencia y Tecnología TIC97-058

    A Powerful Optimization Tool for Analog Integrated Circuits Design

    Get PDF
    This paper presents a new optimization tool for analog circuit design. Proposed tool is based on the robust version of the differential evolution optimization method. Corners of technology, temperature, voltage and current supplies are taken into account during the optimization. That ensures robust resulting circuits. Those circuits usually do not need any schematic change and are ready for the layout.. The newly developed tool is implemented directly to the Cadence design environment to achieve very short setup time of the optimization task. The design automation procedure was enhanced by optimization watchdog feature. It was created to control optimization progress and moreover to reduce the search space to produce better design in shorter time. The optimization algorithm presented in this paper was successfully tested on several design examples

    Global design of analog cells using statistical optimization techniques

    Get PDF
    We present a methodology for automated sizing of analog cells using statistical optimization in a simulation based approach. This methodology enables us to design complex analog cells from scratch within reasonable CPU time. Three different specification types are covered: strong constraints on the electrical performance of the cells, weak constraints on this performance, and design objectives. A mathematical cost function is proposed and a bunch of heuristics is given to increase accuracy and reduce CPU time to minimize the cost function. A technique is also presented to yield designs with reduced variability in the performance parameters, under random variations of the transistor technological parameters. Several CMOS analog cells with complexity levels up to 48 transistors are designed for illustration. Measurements from fabricated prototypes demonstrate the suitability of the proposed methodology
    corecore