43 research outputs found

    Comparative study of healthcare messaging standards for interoperability in ehealth systems

    Get PDF
    Advances in the information and communication technology have created the field of "health informatics," which amalgamates healthcare, information technology and business. The use of information systems in healthcare organisations dates back to 1960s, however the use of technology for healthcare records, referred to as Electronic Medical Records (EMR), management has surged since 1990’s (Net-Health, 2017) due to advancements the internet and web technologies. Electronic Medical Records (EMR) and sometimes referred to as Personal Health Record (PHR) contains the patient’s medical history, allergy information, immunisation status, medication, radiology images and other medically related billing information that is relevant. There are a number of benefits for healthcare industry when sharing these data recorded in EMR and PHR systems between medical institutions (AbuKhousa et al., 2012). These benefits include convenience for patients and clinicians, cost-effective healthcare solutions, high quality of care, resolving the resource shortage and collecting a large volume of data for research and educational needs. My Health Record (MyHR) is a major project funded by the Australian government, which aims to have all data relating to health of the Australian population stored in digital format, allowing clinicians to have access to patient data at the point of care. Prior to 2015, MyHR was known as Personally Controlled Electronic Health Record (PCEHR). Though the Australian government took consistent initiatives there is a significant delay (Pearce and Haikerwal, 2010) in implementing eHealth projects and related services. While this delay is caused by many factors, interoperability is identified as the main problem (Benson and Grieve, 2016c) which is resisting this project delivery. To discover the current interoperability challenges in the Australian healthcare industry, this comparative study is conducted on Health Level 7 (HL7) messaging models such as HL7 V2, V3 and FHIR (Fast Healthcare Interoperability Resources). In this study, interoperability, security and privacy are main elements compared. In addition, a case study conducted in the NSW Hospitals to understand the popularity in usage of health messaging standards was utilised to understand the extent of use of messaging standards in healthcare sector. Predominantly, the project used the comparative study method on different HL7 (Health Level Seven) messages and derived the right messaging standard which is suitable to cover the interoperability, security and privacy requirements of electronic health record. The issues related to practical implementations, change over and training requirements for healthcare professionals are also discussed

    Integrated, reliable and cloud-based personal health record: a scoping review.

    Get PDF
    Personal Health Records (PHR) emerge as an alternative to integrate patient’s health information to give a global view of patients' status. However, integration is not a trivial feature when dealing with a variety electronic health systems from healthcare centers. Access to PHR sensitive information must comply with privacy policies defined by the patient. Architecture PHR design should be in accordance to these, and take advantage of nowadays technology. Cloud computing is a current technology that provides scalability, ubiquity, and elasticity features. This paper presents a scoping review related to PHR systems that achieve three characteristics: integrated, reliable and cloud-based. We found 101 articles that addressed thosecharacteristics. We identified four main research topics: proposal/developed systems, PHR recommendations for development, system integration and standards, and security and privacy. Integration is tackled with HL7 CDA standard. Information reliability is based in ABE security-privacy mechanism. Cloud-based technology access is achieved via SOA.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Principles and Standards for Designing and Managing Integrable and Interoperable Transformed Health Ecosystems

    Get PDF
    The advancement of sciences and technologies, economic challenges, increasing expectations, and consumerism result in a radical transformation of health and social care around the globe, characterized by foundational organizational, methodological, and technological paradigm changes. The transformation of the health and social care ecosystems aims at ubiquitously providing personalized, preventive, predictive, participative precision (5P) medicine, considering and understanding the individual’s health status in a comprehensive context from the elementary particle up to society. For designing and implementing such advanced ecosystems, an understanding and correct representation of the structure, function, and relations of their components is inevitable, thereby including the perspectives, principles, and methodologies of all included disciplines. To guarantee consistent and conformant processes and outcomes, the specifications and principles must be based on international standards. A core standard for representing transformed health ecosystems and managing the integration and interoperability of systems, components, specifications, and artifacts is ISO 23903:2021, therefore playing a central role in this publication. Consequently, ISO/TC 215 and CEN/TC 251, both representing the international standardization on health informatics, declared the deployment of ISO 23903:2021 mandatory for all their projects and standards addressing more than one domain. The paper summarizes and concludes the first author’s leading engagement in the evolution of pHealth in Europe and beyond over the last 15 years, discussing the concepts, principles, and standards for designing, implementing, and managing 5P medicine ecosystems. It not only introduces the theoretical foundations of the approach but also exemplifies its deployment in practical projects and solutions regarding interoperability and integration in multi-domain ecosystems. The presented approach enables comprehensive and consistent integration of and interoperability between domains, systems, related actors, specifications, standards, and solutions. That way, it should help overcome the problems and limitations of data-centric approaches, which still dominate projects and products nowadays, and replace them with knowledge-centric, comprehensive, and consistent ones

    Patient generated health data and electronic health record integration, governance and socio-technical issues: A narrative review

    Get PDF
    Patients’ health records have the potential to include patient generated health data (PGHD), which can aid in the provision of personalized care. Access to these data can allow healthcare professionals to receive additional information that will assist in decision-making and the provision of additional support. Given the diverse sources of PGHD, this review aims to provide evidence on PGHD integration with electronic health records (EHR), models and standards for PGHD exchange with EHR, and PGHD-EHR policy design and development. The review also addresses governance and socio-technical considerations in PGHD management. Databases used for the review include PubMed, Scopus, ScienceDirect, IEEE Xplore, SpringerLink and ACM Digital Library. The review reveals the significance, but current deficiency, of provenance, trust and contextual information as part of PGHD integration with EHR. Also, we find that there is limited work on data quality, and on new data sources and associated data elements, within the design of existing standards developed for PGHD integration. New data sources from emerging technologies like mixed reality, virtual reality, interactive voice response system, and social media are rarely considered. The review recommends the need for well-developed designs and policies for PGHD-EHR integration that promote data quality, patient autonomy, privacy, and enhanced trust

    Challenges and Solutions for Designing and Managing pHealth Ecosystems

    Get PDF
    For improving quality and safety of healthcare as well as efficiency and efficacy of care processes, health systems turn toward personalized, preventive, predictive, participative precision medicine. The related pHealth ecosystem combines different domains represented by a huge variety of different human and non-human actors belonging to different policy domains, coming from different disciplines. Those actors deploy different methodologies, terminologies, and ontologies, offering different levels of knowledge, skills, and experiences, acting in different scenarios and accommodating different business cases to meet the intended business objectives. Core challenge is the formal representation and management of multiple domains' knowledge. For correctly modeling such systems and their behavior, a system-oriented, architecture-centric, ontology-based, policy-driven approach is inevitable, thereby following established Good Modeling Best Practices. The ISO Interoperability Reference Architecture model and framework offers such approach. The paper describes and classifies the ongoing paradigm changes. It presents requirements and solutions for designing and implementing advanced pHealth ecosystems, thereby correctly adopting and integrating existing pHealth interoperability standards, specifications and projects

    Challenges and Solutions for Designing and Managing pHealth Ecosystems

    Get PDF
    For improving quality and safety of healthcare as well as efficiency and efficacy of care processes, health systems turn toward personalized, preventive, predictive, participative precision medicine. The related pHealth ecosystem combines different domains represented by a huge variety of different human and non-human actors belonging to different policy domains, coming from different disciplines. Those actors deploy different methodologies, terminologies, and ontologies, offering different levels of knowledge, skills, and experiences, acting in different scenarios and accommodating different business cases to meet the intended business objectives. Core challenge is the formal representation and management of multiple domains' knowledge. For correctly modeling such systems and their behavior, a system-oriented, architecture-centric, ontology-based, policy-driven approach is inevitable, thereby following established Good Modeling Best Practices. The ISO Interoperability Reference Architecture model and framework offers such approach. The paper describes and classifies the ongoing paradigm changes. It presents requirements and solutions for designing and implementing advanced pHealth ecosystems, thereby correctly adopting and integrating existing pHealth interoperability standards, specifications and projects

    Preface

    Get PDF

    Software integrador de información médica utilizando Health Level Seven y FHIR

    Get PDF
    Fast Healthcare Interoperability Resources (FHIR) y Health Level 7 (HL7) son dos estándares que ayudan el intercambio de datos clínicos y que en los últimos años han ganado bastante protagonismo en la industria médica, ambos son estándares de información médica cuya propuesta es alcanzar la interoperabilidad entre los diferentes sistemas de proveedores de servicios médicos. FHIR y HL7 permiten reducir los esfuerzos de la industria médica a la hora de interoperar con otros entes médicos, puesto que brinda una sola estructura de datos que pretende ser universal, además FHIR se construyó con el enfoque de transferencia de estado representacional o REST que es la interfaz para conectar varios sistemas a través de HTTP. Sin embargo, en la industria médica latinoamericana y en específico en Ecuador, los esfuerzos para alcanzar la interoperabilidad de los sistemas médicos se han visto opacados por muchos aspectos, el más evidente es la inversión que conllevaría construir nuevos sistemas médicos que hagan uso de estos estándares y dejar obsoletos a los anteriores sistemas, o al menos a gran parte de su extracción de datos. Sin embargo, este proceso es necesario, para poder cumplir con la universalidad propuesta por el estado ecuatoriano donde se define la necesidad de extender la cobertura de los beneficios del sistema de salud, a toda la población. En este trabajo de titulación se presenta el diseño e implementación de un middleware de información médica usando estándares HL7 y FHIR, que permite la interoperabilidad de sistemas de información médica.Fast Healthcare Interoperability Resources (FHIR) and Health Level 7 (HL7) in recent years have gained considerable prominence in the medical industry, both are medical information standards whose purpose is to achieve interoperability between the different systems of medical service providers. FHIR and HL7 reduce the efforts of the medical industry when it comes to interoperating with other medical entities, since they provide a single data structure that aims to be universal, and FHIR is built with the REST approach. However, in the Latin American medical industry and specifically in Ecuador, the efforts to achieve medical interoperability have been overshadowed by many aspects, the most evident being the investment that would entail building new medical systems that make use of these standards and render obsolete to previous systems, or at least to much of their data mining. However, this process is necessary in order to comply with the universality proposed by the Ecuadorian state, where it is defined as extending the coverage of the benefits of the health system to the entire population. For this reason, in this degree work, the design and implementation of a medical information middleware is presented using the HL7 and FHIR standards, which allows the interoperability of medical information systems.Ingeniero de SistemasCuenc
    corecore