444 research outputs found

    Gravitomagnetism and gravitational waves

    Full text link
    After extensively reviewing general relativistic gravitomagnetism, both historically and phenomenologically, we review in detail the so-called magnetic components of gravitational waves (GWs), which have to be taken into account in the context of the total response functions of interferometers for GWs propagating from arbitrary directions. Following the more recent approaches of this important issue, the analysis of such magnetic components will be reviewed in both of standard General Theory of Relativity (GTR) and Scalar Tensor Gravity. Thus, we show in detail that such a magnetic component becomes particularly important in the high-frequency portion of the range of ground based interferometers for GWs which arises from the two different theories of gravity. Our reviewed results show that if one neglects the magnetic contribution to the gravitational field of a GW, approximately 15% of the potential observable signal could, in principle, be lost.Comment: To appear in the Special Issue of The Open Astronomy Journal "The Big Challenge of Gravitational Waves, a New Window into the Universe", Editors Christian Corda, Herman J. Mosquera Cuesta, Oswaldo Miranda and Theodore Simo

    Feasibility analysis of gravitational experiments in space

    Get PDF
    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments

    Gravitational sensing with weak value based optical sensors

    Get PDF
    Using weak values amplification angular resolution limits, we theoretically investigate the gravitational sensing of objects. By inserting a force-sensing pendulum into a weak values interferometer, the optical response can sense accelerations to a few 10's of zepto-g/Hz\mathrm{zepto}\text{-}\mathrm{g}/\sqrt{\mathrm{Hz}}, with optical powers of 1 mW1~\mathrm{mW}. We convert this precision into range and mass sensitivity, focusing in detail on simple and torsion pendula. Various noise sources present are discussed, as well as the necessary cooling that should be applied to reach the desired levels of precision.Comment: 9 pages, 4 figures, Quantum Stud.: Math. Found. (2018

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    Matters of Gravity, the newsletter of the APS Topical Group on Gravitation

    Full text link
    News: TGG session in the April meeting, by Cliff Will NRC report, by Beverly Berger MG9 Travel Grant for US researchers, by Jim Isenberg Research Briefs: How many coalescing binaries are there?, by Vicky Kalogera Recent developments in black critical phenomena, by Pat Brady Optical black holes?, by Matt Visser ``Branification:'' an alternative to compactification, by Steve Giddings Searches for non-Newtonian Gravity at Sub-mm Distances, by Riley Newman Quiescent cosmological singularities by Bernd Schmidt The debut of LIGO II, by David Shoemaker Is the universe still accelerating?, by Sean Carroll Conference reports: Journ\' ees Relativistes Weimar 1999, by Volker Perlick The 9th Midwest Relativity Meeting, by Thomas BaumgarteComment: 35 pages, LaTeX with psfig and html.sty, ISSN 1527-3431, Jorge Pullin (editor), html, ps and pdf versions at http://gravity.phys.psu.edu/mog.htm

    Reflections on a Measurement of the Gravitational Constant Using a Beam Balance and 13 Tons of Mercury

    Full text link
    In 2006, a final result of a measurement of the gravitational constant GG performed by researchers at the University of Z\"urich was published. A value of G=6.674\,252(122)\times 10^{-11}\,\mbox{m}^3\,\mbox{kg}^{-1}\,\mbox{s}^{-2} was obtained after an experimental effort that lasted over one decade. Here, we briefly summarize the measurement and discuss the strengths and weaknesses of this approach.Comment: 13 pages, 5 figures accepted for publication in Phil. Trans. R. Soc.

    Relevance of the weak equivalence principle and experiments to test it: lessons from the past and improvements expected in space

    Full text link
    Tests of the Weak Equivalence Principle (WEP) probe the foundations of physics. Ever since Galileo in the early 1600s, WEP tests have attracted some of the best experimentalists of any time. Progress has come in bursts, each stimulated by the introduction of a new technique: the torsion balance, signal modulation by Earth rotation, the rotating torsion balance. Tests for various materials in the field of the Earth and the Sun have found no violation to the level of about 1 part in 1e13. A different technique, Lunar Laser Ranging (LLR), has reached comparable precision. Today, both laboratory tests and LLR have reached a point when improving by a factor of 10 is extremely hard. The promise of another quantum leap in precision rests on experiments performed in low Earth orbit. The Microscope satellite, launched in April 2016 and currently taking data, aims to test WEP in the field of Earth to 1e-15, a 100-fold improvement possible thanks to a driving signal in orbit almost 500 times stronger than for torsion balances on ground. The `Galileo Galilei' (GG) experiment, by combining the advantages of space with those of the rotating torsion balance, aims at a WEP test 100 times more precise than Microscope, to 1e-17. A quantitative comparison of the key issues in the two experiments is presented, along with recent experimental measurements relevant for GG. Early results from Microscope, reported at a conference in March 2017, show measurement performance close to the expectations and confirm the key role of rotation with the advantage (unique to space) of rotating the whole spacecraft. Any non-null result from Microscope would be a major discovery and call for urgent confirmation; with 100 times better precision GG could settle the matter and provide a deeper probe of the foundations of physics.Comment: To appear: Physics Letters A, special issue in memory of Professor Vladimir Braginsky, 2017. Available online: http://dx.doi.org/10.1016/j.physleta.2017.09.02
    • …
    corecore