364 research outputs found

    Two results on entropy, chaos, and independence in symbolic dynamics

    Full text link
    We survey the connections between entropy, chaos, and independence in topological dynamics. We present extensions of two classical results placing the following notions in the context of symbolic dynamics: 1. Equivalence of positive entropy and the existence of a large (in terms of asymptotic and Shnirelman densities) set of combinatorial independence for shift spaces. 2. Existence of a mixing shift space with a dense set of periodic points with topological entropy zero and without ergodic measure with full support, nor any distributionally chaotic pair. Our proofs are new and yield conclusions stronger than what was known before.Comment: Comments are welcome! This preprint contains results from arXiv:1401.5969v

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata

    Dynamical systems via domains:Toward a unified foundation of symbolic and non-symbolic computation

    Get PDF
    Non-symbolic computation (as, e.g., in biological and artificial neural networks) is astonishingly good at learning and processing noisy real-world data. However, it lacks the kind of understanding we have of symbolic computation (as, e.g., specified by programming languages). Just like symbolic computation, also non-symbolic computation needs a semantics—or behavior description—to achieve structural understanding. Domain theory has provided this for symbolic computation, and this thesis is about extending it to non-symbolic computation. Symbolic and non-symbolic computation can be described in a unified framework as state-discrete and state-continuous dynamical systems, respectively. So we need a semantics for dynamical systems: assigning to a dynamical system a domain—i.e., a certain mathematical structure—describing the system’s behavior. In part 1 of the thesis, we provide this domain-theoretic semantics for the ‘symbolic’ state-discrete systems (i.e., labeled transition systems). And in part 2, we do this for the ‘non-symbolic’ state-continuous systems (known from ergodic theory). This is a proper semantics in that the constructions form functors (in the sense of category theory) and, once appropriately formulated, even adjunctions and, stronger yet, equivalences. In part 3, we explore how this semantics relates the two types of computation. It suggests that non-symbolic computation is the limit of symbolic computation (in the ‘profinite’ sense). Conversely, if the system’s behavior is fairly stable, it may be described as realizing symbolic computation (here the concepts of ergodicity and algorithmic randomness are useful). However, the underlying concept of stability is limited by a no-go result due to a novel interpretation of Fitch’s paradox. This also has implications for AI-safety and, more generally, suggests fruitful applications of philosophical tools in the non-symbolic computation of modern AI
    • …
    corecore