10,019 research outputs found

    A survey on metaheuristics for stochastic combinatorial optimization

    Get PDF
    Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this fiel

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Using Datamining Techniques to Help Metaheuristics: A Short Survey

    Get PDF
    International audienceHybridizing metaheuristic approaches becomes a common way to improve the efficiency of optimization methods. Many hybridizations deal with the combination of several optimization methods. In this paper we are interested in another type of hybridization, where datamining approaches are combined within an optimization process. Hence, we propose to study the interest of combining metaheuristics and datamining through a short survey that enumerates the different opportunities of such combinations based on literature examples

    Supply chain management: An opportunity for metaheuristics

    Get PDF
    In today’s highly competitive and global marketplace the pressure on organizations to find new ways to create and deliver value to customers grows ever stronger. In the last two decades, logistics and supply chain has moved to the center stage. There has been a growing recognition that it is through an effective management of the logistics function and the supply chain that the goal of cost reduction and service enhancement can be achieved. The key to success in Supply Chain Management (SCM) require heavy emphasis on integration of activities, cooperation, coordination and information sharing throughout the entire supply chain, from suppliers to customers. To be able to respond to the challenge of integration there is the need of sophisticated decision support systems based on powerful mathematical models and solution techniques, together with the advances in information and communication technologies. The industry and the academia have become increasingly interested in SCM to be able to respond to the problems and issues posed by the changes in the logistics and supply chain. We present a brief discussion on the important issues in SCM. We then argue that metaheuristics can play an important role in solving complex supply chain related problems derived by the importance of designing and managing the entire supply chain as a single entity. We will focus specially on the Iterated Local Search, Tabu Search and Scatter Search as the ones, but not limited to, with great potential to be used on solving the SCM related problems. We will present briefly some successful applications.Supply chain management, metaheuristics, iterated local search, tabu search and scatter search

    Metaheuristic approaches for optimal broadcasting design in metropolitan MANETs

    Get PDF
    11th International Conference on Computer Aided Systems Theory. Las Palmas de Gran Canaria, Spain, February 12-16, 2007Mobile Ad-hoc Networks (MANETs) are composed of a set of communicating devices which are able to spontaneously interconnect without any pre-existing infrastructure. In such scenario, broadcasting becomes an operation of tremendous importance for the own existence and operation of the network. Optimizing a broadcasting strategy in MANETs is a multiobjective problem accounting for three goals: reaching as many stations as possible, minimizing the network utilization, and reducing the duration of the operation itself. This research, which has been developed within the OPLINK project (http://oplink.lcc.uma.es), faces a wide study about this problem in metropolitan MANETs with up to seven different advanced multiobjective metaheuristics. They all compute Pareto fronts of solutions which empower a human designer with the ability of choosing the preferred configuration for the network. The quality of these fronts is evaluated by using the hypervolume metric. The obtained results show that the SPEA2 algorithm is the most accurate metaheuristic for solving the broadcasting problem.Publicad

    A statistical learning based approach for parameter fine-tuning of metaheuristics

    Get PDF
    Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.Peer ReviewedPostprint (published version

    On the use of reference points for the biobjective Inventory Routing Problem

    Full text link
    The article presents a study on the biobjective inventory routing problem. Contrary to most previous research, the problem is treated as a true multi-objective optimization problem, with the goal of identifying Pareto-optimal solutions. Due to the hardness of the problem at hand, a reference point based optimization approach is presented and implemented into an optimization and decision support system, which allows for the computation of a true subset of the optimal outcomes. Experimental investigation involving local search metaheuristics are conducted on benchmark data, and numerical results are reported and analyzed
    • 

    corecore