4,101 research outputs found

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 153)

    Get PDF
    This bibliography lists 175 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1976

    Self-Supervised Multimodal Reconstruction Pre-training for Retinal Computer-Aided Diagnosis

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Computer-aided diagnosis using retinal fundus images is crucial for the early detection of many ocular and systemic diseases. Nowadays, deep learning-based approaches are commonly used for this purpose. However, training deep neural networks usually requires a large amount of annotated data, which is not always available. In practice, this issue is commonly mitigated with different techniques, such as data augmentation or transfer learning. Nevertheless, the latter is typically faced using networks that were pre-trained on additional annotated data. An emerging alternative to the traditional transfer learning source tasks is the use of self-supervised tasks that do not require manually annotated data for training. In that regard, we propose a novel self-supervised visual learning strategy for improving the retinal computer-aided diagnosis systems using unlabeled multimodal data. In particular, we explore the use of a multimodal reconstruction task between complementary retinal imaging modalities. This allows to take advantage of existent unlabeled multimodal data in the medical domain, improving the diagnosis of different ocular diseases with additional domain-specific knowledge that does not rely on manual annotation. To validate and analyze the proposed approach, we performed several experiments aiming at the diagnosis of different diseases, including two of the most prevalent impairing ocular disorders: glaucoma and age-related macular degeneration. Additionally, the advantages of the proposed approach are clearly demonstrated in the comparisons that we perform against both the common fully-supervised approaches in the literature as well as current self-supervised alternatives for retinal computer-aided diagnosis. In general, the results show a satisfactory performance of our proposal, which improves existing alternatives by leveraging the unlabeled multimodal visual data that is commonly available in the medical field.This work is supported by Instituto de Salud Carlos III, Government of Spain, and the European Regional Development Fund (ERDF) of the European Union (EU) through the DTS18/00136 research project; Ministerio de Ciencia e Innovación, Government of Spain, through the RTI2018-095894-B-I00 and PID2019-108435RB-I00 research projects; Xunta de Galicia and the European Social Fund (ESF) of the EU through the predoctoral grant contract ref. ED481A-2017/328; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, through Grupos de Referencia Competitiva, grant ref. ED431C 2020/24. CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia , through the ERDF (80%) and Secretaría Xeral de Universidades (20%)Xunta de Galicia; ED431C 2020/24Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED481A-2017/32

    Application of infrared thermography in computer aided diagnosis

    Get PDF
    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care
    corecore