4,778 research outputs found

    Artificial-Noise-Aided Physical Layer Phase Challenge-Response Authentication for Practical OFDM Transmission

    Full text link
    Recently, we have developed a PHYsical layer Phase Challenge-Response Authentication Scheme (PHY-PCRAS) for independent multicarrier transmission. In this paper, we make a further step by proposing a novel artificial-noise-aided PHY-PCRAS (ANA-PHY-PCRAS) for practical orthogonal frequency division multiplexing (OFDM) transmission, where the Tikhonov-distributed artificial noise is introduced to interfere with the phase-modulated key for resisting potential key-recovery attacks whenever a static channel between two legitimate users is unfortunately encountered. Then, we address various practical issues for ANA-PHY-PCRAS with OFDM transmission, including correlation among subchannels, imperfect carrier and timing recoveries. Among them, we show that the effect of sampling offset is very significant and a search procedure in the frequency domain should be incorporated for verification. With practical OFDM transmission, the number of uncorrelated subchannels is often not sufficient. Hence, we employ a time-separated approach for allocating enough subchannels and a modified ANA-PHY-PCRAS is proposed to alleviate the discontinuity of channel phase at far-separated time slots. Finally, the key equivocation is derived for the worst case scenario. We conclude that the enhanced security of ANA-PHY-PCRAS comes from the uncertainty of both the wireless channel and introduced artificial noise, compared to the traditional challenge-response authentication scheme implemented at the upper layer.Comment: 33 pages, 13 figures, submitted for possible publicatio

    An Overview of Broadband communication over Power Lines

    Get PDF
    Broadband over power lines are Systems for carrying data on conductors used for electric power transmission. Power line communication technologies can be used for different applications ranging from home automation to internet access. With the spread of broadband technologies in the last few years, there are yet significant areas in the world that do not have access to high speed internet, as compared with the few internet service providers in existence, the additive expenditures of laying cables and building necessary infrastructure to provide DSL in many areas most especially rural areas is too great. But if broadband is served through power lines considering the fact that it exist all over the country, there will be no need to build new infrastructure. Therefore, anywhere there is electricity, there could also be broadband. Broadband over Power line is designed to offer an alternative means to provide high speed internet access, voice over Internet protocol (VOIP) and other broadband services, using medium and low voltage lines to reach customers and businesses by combining the principle of wireless networking, modems and Radio. Researchers and developers have created ways to transmit data over power lines into homes at speeds between 500kilobits and 3 megabits per second which is equivalent to the cable DSL (Digital Subscriber Line) and this is achieved by modifying the present power grids with specialized equipments. With this knowledge, the broadband power line developers could partner with power companies and Internet service providers to bring broadband to everyone with access to electricity

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.
    • …
    corecore