1,248 research outputs found

    Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors

    Full text link
    We address the design of opportunistic spectrum access (OSA) strategies that allow secondary users to independently search for and exploit instantaneous spectrum availability. Integrated in the joint design are three basic components: a spectrum sensor that identifies spectrum opportunities, a sensing strategy that determines which channels in the spectrum to sense, and an access strategy that decides whether to access based on imperfect sensing outcomes. We formulate the joint PHY-MAC design of OSA as a constrained partially observable Markov decision process (POMDP). Constrained POMDPs generally require randomized policies to achieve optimality, which are often intractable. By exploiting the rich structure of the underlying problem, we establish a separation principle for the joint design of OSA. This separation principle reveals the optimality of myopic policies for the design of the spectrum sensor and the access strategy, leading to closed-form optimal solutions. Furthermore, decoupling the design of the sensing strategy from that of the spectrum sensor and the access strategy, the separation principle reduces the constrained POMDP to an unconstrained one, which admits deterministic optimal policies. Numerical examples are provided to study the design tradeoffs, the interaction between the spectrum sensor and the sensing and access strategies, and the robustness of the ensuing design to model mismatch.Comment: 43 pages, 10 figures, submitted to IEEE Transactions on Information Theory in Feb. 200

    Cognitive MAC Protocols Using Memory for Distributed Spectrum Sharing Under Limited Spectrum Sensing

    Full text link
    The main challenges of cognitive radio include spectrum sensing at the physical (PHY) layer to detect the activity of primary users and spectrum sharing at the medium access control (MAC) layer to coordinate access among coexisting secondary users. In this paper, we consider a cognitive radio network in which a primary user shares a channel with secondary users that cannot distinguish the signals of the primary user from those of a secondary user. We propose a class of distributed cognitive MAC protocols to achieve efficient spectrum sharing among the secondary users while protecting the primary user from potential interference by the secondary users. By using a MAC protocol with one-slot memory, we can obtain high channel utilization by the secondary users while limiting interference to the primary user at a low level. The results of this paper suggest the possibility of utilizing MAC design in cognitive radio networks to overcome limitations in spectrum sensing at the PHY layer as well as to achieve spectrum sharing at the MAC layer.Comment: 24 pages, 7 figure
    • …
    corecore