19,563 research outputs found

    Intrinsically Universal Cellular Automata

    Full text link
    This talk advocates intrinsic universality as a notion to identify simple cellular automata with complex computational behavior. After an historical introduction and proper definitions of intrinsic universality, which is discussed with respect to Turing and circuit universality, we discuss construction methods for small intrinsically universal cellular automata before discussing techniques for proving non universality

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Upper Bound on the Products of Particle Interactions in Cellular Automata

    Full text link
    Particle-like objects are observed to propagate and interact in many spatially extended dynamical systems. For one of the simplest classes of such systems, one-dimensional cellular automata, we establish a rigorous upper bound on the number of distinct products that these interactions can generate. The upper bound is controlled by the structural complexity of the interacting particles---a quantity which is defined here and which measures the amount of spatio-temporal information that a particle stores. Along the way we establish a number of properties of domains and particles that follow from the computational mechanics analysis of cellular automata; thereby elucidating why that approach is of general utility. The upper bound is tested against several relatively complex domain-particle cellular automata and found to be tight.Comment: 17 pages, 12 figures, 3 tables, http://www.santafe.edu/projects/CompMech/papers/ub.html V2: References and accompanying text modified, to comply with legal demands arising from on-going intellectual property litigation among third parties. V3: Accepted for publication in Physica D. References added and other small changes made per referee suggestion

    Homotopy Bisimilarity for Higher-Dimensional Automata

    Get PDF
    We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is equivalent to a straight-forward generalization of standard bisimilarity to higher dimensions, and that it is finer than split bisimilarity and incomparable with history-preserving bisimilarity.Comment: Heavily revised version of arXiv:1209.492
    corecore