2,347 research outputs found

    Real-time High Resolution Fusion of Depth Maps on GPU

    Full text link
    A system for live high quality surface reconstruction using a single moving depth camera on a commodity hardware is presented. High accuracy and real-time frame rate is achieved by utilizing graphics hardware computing capabilities via OpenCL and by using sparse data structure for volumetric surface representation. Depth sensor pose is estimated by combining serial texture registration algorithm with iterative closest points algorithm (ICP) aligning obtained depth map to the estimated scene model. Aligned surface is then fused into the scene. Kalman filter is used to improve fusion quality. Truncated signed distance function (TSDF) stored as block-based sparse buffer is used to represent surface. Use of sparse data structure greatly increases accuracy of scanned surfaces and maximum scanning area. Traditional GPU implementation of volumetric rendering and fusion algorithms were modified to exploit sparsity to achieve desired performance. Incorporation of texture registration for sensor pose estimation and Kalman filter for measurement integration improved accuracy and robustness of scanning process

    Volume-Enclosing Surface Extraction

    Full text link
    In this paper we present a new method, which allows for the construction of triangular isosurfaces from three-dimensional data sets, such as 3D image data and/or numerical simulation data that are based on regularly shaped, cubic lattices. This novel volume-enclosing surface extraction technique, which has been named VESTA, can produce up to six different results due to the nature of the discretized 3D space under consideration. VESTA is neither template-based nor it is necessarily required to operate on 2x2x2 voxel cell neighborhoods only. The surface tiles are determined with a very fast and robust construction technique while potential ambiguities are detected and resolved. Here, we provide an in-depth comparison between VESTA and various versions of the well-known and very popular Marching Cubes algorithm for the very first time. In an application section, we demonstrate the extraction of VESTA isosurfaces for various data sets ranging from computer tomographic scan data to simulation data of relativistic hydrodynamic fireball expansions.Comment: 24 pages, 33 figures, 4 tables, final versio

    SlicerAstro: a 3-D interactive visual analytics tool for HI data

    Get PDF
    SKA precursors are capable of detecting hundreds of galaxies in HI in a single 12 hours pointing. In deeper surveys one will probe more easily faint HI structures, typically located in the vicinity of galaxies, such as tails, filaments, and extraplanar gas. The importance of interactive visualization has proven to be fundamental for the exploration of such data as it helps users to receive immediate feedback when manipulating the data. We have developed SlicerAstro, a 3-D interactive viewer with new analysis capabilities, based on traditional 2-D input/output hardware. These capabilities enhance the data inspection, allowing faster analysis of complex sources than with traditional tools. SlicerAstro is an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing. We demonstrate the capabilities of the current stable binary release of SlicerAstro, which offers the following features: i) handling of FITS files and astronomical coordinate systems; ii) coupled 2-D/3-D visualization; iii) interactive filtering; iv) interactive 3-D masking; v) and interactive 3-D modeling. In addition, SlicerAstro has been designed with a strong, stable and modular C++ core, and its classes are also accessible via Python scripting, allowing great flexibility for user-customized visualization and analysis tasks.Comment: 18 pages, 11 figures, Accepted by Astronomy and Computing. SlicerAstro link: https://github.com/Punzo/SlicerAstro/wiki#get-slicerastr

    3-D interactive visualisation tools for HI spectral line imaging

    Get PDF
    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro\tt{SlicerAstro}, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling
    • …
    corecore