43 research outputs found

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    An Energy-Efficient Design Paradigm for a Memory Cell Based on Novel Nanoelectromechanical Switches

    Get PDF
    In this chapter, we explain NEMsCAM cell, a new content-addressable memory (CAM) cell, which is designed based on both CMOS technologies and nanoelectromechanical (NEM) switches. The memory part of NEMsCAM is designed with two complementary nonvolatile NEM switches and located on top of the CMOS-based comparison component. As a use case, we evaluate first-level instruction and data translation lookaside buffers (TLBs) with 16 nm CMOS technology at 2 GHz. The simulation results demonstrate that the NEMsCAM TLB reduces the energy consumption per search operation (by 27%), standby mode (by 53.9%), write operation (by 41.9%), and the area (by 40.5%) compared to a CMOS-only TLB with minimal performance overhead

    Big Data causing Big (TLB) Problems: Taming Random Memory Accesses on the GPU

    Get PDF
    GPUs are increasingly adopted for large-scale database processing, where data accesses represent the major part of the computation. If the data accesses are irregular, like hash table accesses or random sampling, the GPU performance can suffer. Especially when scaling such accesses beyond 2GB of data, a performance decrease of an order of magnitude is encountered. This paper analyzes the source of the slowdown through extensive micro-benchmarking, attributing the root cause to the Translation Lookaside Buffer (TLB). Using the micro-benchmarks, the TLB hierarchy and structure are fully analyzed on two different GPU architectures, identifying never-before-published TLB sizes that can be used for efficient large-scale application tuning. Based on the gained knowledge, we propose a TLB-conscious approach to mitigate the slowdown for algorithms with irregular memory access. The proposed approach is applied to two fundamental database operations - random sampling and hash-based grouping - showing that the slowdown can be dramatically reduced, and resulting in a performance increase of up to 13×

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    Avoiding core's DUE & SDC via acoustic wave detectors and tailored error containment and recovery

    Get PDF
    The trend of downsizing transistors and operating voltage scaling has made the processor chip more sensitive against radiation phenomena making soft errors an important challenge. New reliability techniques for handling soft errors in the logic and memories that allow meeting the desired failures-in-time (FIT) target are key to keep harnessing the benefits of Moore's law. The failure to scale the soft error rate caused by particle strikes, may soon limit the total number of cores that one may have running at the same time. This paper proposes a light-weight and scalable architecture to eliminate silent data corruption errors (SDC) and detected unrecoverable errors (DUE) of a core. The architecture uses acoustic wave detectors for error detection. We propose to recover by confining the errors in the cache hierarchy, allowing us to deal with the relatively long detection latencies. Our results show that the proposed mechanism protects the whole core (logic, latches and memory arrays) incurring performance overhead as low as 0.60%. © 2014 IEEE.Peer ReviewedPostprint (author's final draft

    Hybrid2: Combining Caching and Migration in Hybrid Memory Systems

    Get PDF
    This paper considers a hybrid memory system composed of memory technologies with different characteristics; in particular a small, near memory exhibiting high bandwidth, i.e., 3D-stacked DRAM, and a larger, far memory offering capacity at lower bandwidth, i.e., off-chip DRAM. In the past,the near memory of such a system has been used either as a DRAM cache or as part of a flat address space combined with a migration mechanism. Caches and migration offer different tradeoffs (between performance, main memory capacity, data transfer costs, etc.) and share similar challenges related todata-transfer granularity and metadata management. This paper proposes Hybrid2 , a new hybrid memory system architecture that combines a DRAM cache with a migration scheme. Hybrid 2 does not deny valuable capacity from the memory system because it uses only a small fraction of the near memory as a DRAM cache; 64MB in our experiments.It further leverages the DRAM cache as a staging area to select the data most suitable for migration. Finally, Hybrid2 alleviates the metadata overheads of both DRAM caches and migration using a common mechanism. Using near to far memory ratios of 1:16, 1:8 and 1:4 in our experiments, Hybrid2 on average outperforms current state-of-the-art migration schemes by 7.9%, 9.1% and 6.4%, respectively. In the same system configurations, compared to DRAM caches Hybrid2 gives away on average only 0.3%, 1.2%, and 5.3% of performance offering 5.9%, 12.1%, and 24.6% more main memory capacity, respectively

    DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability

    Get PDF
    To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM) and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC) design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM), spin transfer torque RAM (STT-RAM), phase change RAM (PCM) and embedded DRAM (eDRAM) and 2D memories designed using spin orbit torque RAM (SOT-RAM), domain wall memory (DWM) and Flash memory. In addition to single-level cell (SLC) designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product) for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D) for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparsh_mittal/destiny_v2
    corecore