12,423 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Full text link
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008

    A survey on mitigation methods to Black hole Attack on AODV routing protocol

    Get PDF
    AODV is a routing protocol that is designed for MANETs and it is using the on-demand routing method to establish the routes between nodes. The main benefit of this protocol is establishment of desired routes to destination when the source node requires and it keeps the routes as long as they are needed. The black hole attack is a common attack that can be accrued in AODV protocols. In this kind of attack, the attacker uses of one or more malicious nodes which advertise themselves in the network by setting a zero metric to all the destinations that causes all the nodes toward the data packets to these malicious nodes. The AODV is vulnerable against black hole attacks due to having network centric property, where all the nodes have to share their routing tables for each other. In this paper, we present the survey of existing mitigation methods that have been proposed to secure AODV. Keywords: Mobile Ad hoc Network (MANET); Black hole attack; Cooperative Black hole attack; Ad-hoc On-demand Distance Vector (AODV)

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • …
    corecore