207 research outputs found

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System

    An Approach for Mitigating Denial of Service Attack

    Get PDF
    Distributed Denial of Service (DDoS) attacks are the most common types of cyber-attack on the internet and are rapidly increasing. Denial of service/distributed denial of service attack is an explicit attempt to make a machine or a network resource unavailable to its intended users. Attackers interrupt/suspend services of the host connected to internet temporarily or indefinitely.It involves saturating the target machine with external communication requests such that it cannot either respond to legitimate traffic or responds so slowly as to be rendered effectively unavailable. Two general form of Dos attacks are - those attacks that crashes services (computer attack) and those that flood services (network attack). Flooding DDoS attacks produce adverse effects for critical infrastructure availability, integrity and confidentiality. Current defense approaches cannot efficiently detect and filter out the attack traffic in real time. Based on the assumption that the attacker flows are very aggressive than the legitimate users the proposed work provides sufficient bandwidth to genuine users during flooding DDoS attack.The aim of the project is to implement an approach for mitigating DDoS based on “The Interface Based Rate Limiting (IBRL) algorithm”, used to mitigate the identified DDoS attacks. The implementation is carried out on a simulation tool Omnett++ installed on linux machine. The results are the plots that show that there is considerable increase in the two important and significant measures, response time and packet drop metrics for legitimate users even under DoS and DDoS attacks

    Algorithms for Reconstructing DDoS Attack Graphs using Probabilistic Packet Marking

    Full text link
    DoS and DDoS attacks are widely used and pose a constant threat. Here we explore Probability Packet Marking (PPM), one of the important methods for reconstructing the attack-graph and detect the attackers. We present two algorithms. Differently from others, their stopping time is not fixed a priori. It rather depends on the actual distance of the attacker from the victim. Our first algorithm returns the graph at the earliest feasible time, and turns out to guarantee high success probability. The second algorithm enables attaining any predetermined success probability at the expense of a longer runtime. We study the performance of the two algorithms theoretically, and compare them to other algorithms by simulation. Finally, we consider the order in which the marks corresponding to the various edges of the attack graph are obtained by the victim. We show that, although edges closer to the victim tend to be discovered earlier in the process than farther edges, the differences are much smaller than previously thought.Comment: 30 pages, 4 figures, 4 table

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges

    A Comparative Study on Machine Learning Algorithms for Network Defense

    Get PDF
    Network security specialists use machine learning algorithms to detect computer network attacks and prevent unauthorized access to their networks. Traditionally, signature and anomaly detection techniques have been used for network defense. However, detection techniques must adapt to keep pace with continuously changing security attacks. Therefore, machine learning algorithms always learn from experience and are appropriate tools for this adaptation. In this paper, ten machine learning algorithms were trained with the KDD99 dataset with labels, then they were tested with different dataset without labels. The researchers investigate the speed and the efficiency of these machine learning algorithms in terms of several selected benchmarks such as time to build models, kappa statistic, root mean squared error, accuracy by attack class, and percentage of correctly classified instances of the classifier algorithms

    A multi-disciplinary framework for cyber attribution

    Get PDF
    Effective Cyber security is critical to the prosperity of any nation in the modern world. We have become dependant upon this interconnected network of systems for a number of critical functions within society. As our reliance upon this technology has increased, as has the prospective gains for malicious actors who would abuse these systems for their own personal benefit, at the cost of legitimate users. The result has been an explosion of cyber attacks, or cyber enabled crimes. The threat from hackers, organised criminals and even nations states is ever increasing. One of the critical enablers to our cyber security is that of cyber attribution, the ability to tell who is acting against our systems. A purely technical approach to cyber attribution has been found to be ineffective in the majority of cases, taking too narrow approach to the attribution problem. A purely technical approach will provide Indicators Of Compromise (IOC) which is suitable for the immediate recovery and clean up of a cyber event. It fails however to ask the deeper questions of the origin of the attack. This can be derived from a wider set of analysis and additional sources of data. Unfortunately due to the wide range of data types and highly specialist skills required to perform the deep level analysis there is currently no common framework for analysts to work together towards resolving the attribution problem. This is further exasperated by a communication barrier between the highly specialised fields and no obviously compatible data types. The aim of the project is to develop a common framework upon which experts from a number of disciplines can add to the overall attribution picture. These experts will add their input in the form of a library. Firstly a process was developed to enable the creation of compatible libraries in different specialist fields. A series of libraries can be used by an analyst to create an overarching attribution picture. The framework will highlight any intelligence gaps and additionally an analyst can use the list of libraries to suggest a tool or method to fill that intelligence gap. By the end of the project a working framework had been developed with a number of libraries from a wide range of technical attribution disciplines. These libraries were used to feed in real time intelligence to both technical and nontechnical analysts who were then able to use this information to perform in depth attribution analysis. The pictorial format of the framework was found to assist in the breaking down of the communication barrier between disciplines and was suitable as an intelligence product in its own right, providing a useful visual aid to briefings. The simplicity of the library based system meant that the process was easy to learn with only a short introduction to the framework required

    ERROR CORRECTION CODE-BASED EMBEDDING IN ADAPTIVE RATE WIRELESS COMMUNICATION SYSTEMS

    Get PDF
    In this dissertation, we investigated the methods for development of embedded channels within error correction mechanisms utilized to support adaptive rate communication systems. We developed an error correction code-based embedding scheme suitable for application in modern wireless data communication standards. We specifically implemented the scheme for both low-density parity check block codes and binary convolutional codes. While error correction code-based information hiding has been previously presented in literature, we sought to take advantage of the fact that these wireless systems have the ability to change their modulation and coding rates in response to changing channel conditions. We utilized this functionality to incorporate knowledge of the channel state into the scheme, which led to an increase in embedding capacity. We conducted extensive simulations to establish the performance of our embedding methodologies. Results from these simulations enabled the development of models to characterize the behavior of the embedded channels and identify sources of distortion in the underlying communication system. Finally, we developed expressions to define limitations on the capacity of these channels subject to a variety of constraints, including the selected modulation type and coding rate of the communication system, the current channel state, and the specific embedding implementation.Commander, United States NavyApproved for public release; distribution is unlimited

    DECEPTION BASED TECHNIQUES AGAINST RANSOMWARES: A SYSTEMATIC REVIEW

    Get PDF
    Ransomware is the most prevalent emerging business risk nowadays. It seriously affects business continuity and operations. According to Deloitte Cyber Security Landscape 2022, up to 4000 ransomware attacks occur daily, while the average number of days an organization takes to identify a breach is 191. Sophisticated cyber-attacks such as ransomware typically must go through multiple consecutive phases (initial foothold, network propagation, and action on objectives) before accomplishing its final objective. This study analyzed decoy-based solutions as an approach (detection, prevention, or mitigation) to overcome ransomware. A systematic literature review was conducted, in which the result has shown that deception-based techniques have given effective and significant performance against ransomware with minimal resources. It is also identified that contrary to general belief, deception techniques mainly involved in passive approaches (i.e., prevention, detection) possess other active capabilities such as ransomware traceback and obstruction (thwarting), file decryption, and decryption key recovery. Based on the literature review, several evaluation methods are also analyzed to measure the effectiveness of these deception-based techniques during the implementation process

    A Method to Enhance the Accuracy of Digital Forensics in the Absence of Complete Evidence in Saudi Arabia

    Get PDF
    The tremendous increase in the use of digital devices has led to their involvement in the vast majority of current criminal investigations. As a result, digital forensics has increasingly become one of the most important aspects of criminal investigations. The digital forensics process involves consideration of a number of important phases in order to achieve the required level of accuracy and to reach a successful conclusion of the investigation into the digital aspects of crimes; through obtaining acceptable evidence for use in a court of law. There have been a number of models developed and produced since 1984 to support the digital investigation processes. In this submission, I introduce a proposed model for the digital investigation processes which is based on the scope of the Saudi Arabia investigation process, which has been integrated with existing models of digital investigation processes and has produced a new phase to deal with a situation where there is insufficient evidence. In this research, grounded theory has been adopted as a research method to investigate and explore the participant’s perspectives and their opinions regarding the adoption of a method of a digital forensics investigation process in the absence of complete evidence in the Saudi Arabian context. The interaction of investigators with digital forensics processes involves the social aspect of digital investigation which is why it was suitable to adopt a grounded theory approach. A semi-structured data collection approach has been adopted, to enable the participants to express their visions, concerns, opinions and feelings related to factors that impact the adoption of the DF model for use in cases where there is an absence of sufficient evidence in Saudi Arabia. The proposed model emerged after conducting a number of interviews and analysing the data of this research. The researcher developed the proposed model based on the answers of the participant which helped the researcher to find a solution for dealing with cases where there is insufficient evidence, through adding a unique step in the investigation process, the “TraceBack” Phase. This study is the first in Saudi Arabia to be developed to enhance the accuracy of digital forensics in the absence of sufficient evidence, which opens a new method of research. It is also the first time has been employed a grounded theory in a digital forensics study in the Saudi context, where it was used in a digital forensics study, which indicates the possibility of applying this methodology to this field.Saudi cultural bureau in Londo
    corecore