18,097 research outputs found

    Navigating large-scale virtual environments: what differences occur between helmet-mounted and desk-top displays?

    Get PDF
    Participants used a helmet-mounted display (HMD) and a desk-top (monitor) display to learn the layouts of two large-scale virtual environments (VEs) through repeated, direct navigational experience. Both VEs were ‘‘virtual buildings’’ containing more than seventy rooms. Participants using the HMD navigated the buildings significantly more quickly and developed a significantly more accurate sense of relative straight-line distance. There was no significant difference between the two types of display in terms of the distance that participants traveled or the mean accuracy of their direction estimates. Behavioral analyses showed that participants took advantage of the natural, head-tracked interface provided by the HMD in ways that included ‘‘looking around’’more often while traveling through the VEs, and spending less time stationary in the VEs while choosing a direction in which to travel

    Empirical Comparisons of Virtual Environment Displays

    Get PDF
    There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Initial Evaluation of Accessibility and Design Awareness with 3-D Immersive Environments

    Get PDF
    This paper describes an effort to build and evaluate the effectiveness of an immersive 3-D visualization system to help increase the awareness that students have when designing software that has a high level of accessibility for the differently abled. The demonstration utilizes an immersive virtual reality (VR) environment in which we simulated two types of colorblindness in a generally familiar environment. We report on the initial trial of this tool and the results of student surveys designed to assess impact on student perception and understanding and demonstrate that the use of virtual environments can give students greater empathy for individuals with visual impairments

    Future Directions in Astronomy Visualisation

    Full text link
    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.Comment: 13 pages, 2 figures, accepted for publication in PAS

    MetaSpace II: Object and full-body tracking for interaction and navigation in social VR

    Full text link
    MetaSpace II (MS2) is a social Virtual Reality (VR) system where multiple users can not only see and hear but also interact with each other, grasp and manipulate objects, walk around in space, and get tactile feedback. MS2 allows walking in physical space by tracking each user's skeleton in real-time and allows users to feel by employing passive haptics i.e., when users touch or manipulate an object in the virtual world, they simultaneously also touch or manipulate a corresponding object in the physical world. To enable these elements in VR, MS2 creates a correspondence in spatial layout and object placement by building the virtual world on top of a 3D scan of the real world. Through the association between the real and virtual world, users are able to walk freely while wearing a head-mounted device, avoid obstacles like walls and furniture, and interact with people and objects. Most current virtual reality (VR) environments are designed for a single user experience where interactions with virtual objects are mediated by hand-held input devices or hand gestures. Additionally, users are only shown a representation of their hands in VR floating in front of the camera as seen from a first person perspective. We believe, representing each user as a full-body avatar that is controlled by natural movements of the person in the real world (see Figure 1d), can greatly enhance believability and a user's sense immersion in VR.Comment: 10 pages, 9 figures. Video: http://living.media.mit.edu/projects/metaspace-ii

    A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted Displays

    Get PDF
    We identify usability challenges facing consumers adopting Virtual Reality (VR) head-mounted displays (HMDs) in a survey of 108 VR HMD users. Users reported significant issues in interacting with, and being aware of their real-world context when using a HMD. Building upon existing work on blending real and virtual environments, we performed three design studies to address these usability concerns. In a typing study, we show that augmenting VR with a view of reality significantly corrected the performance impairment of typing in VR. We then investigated how much reality should be incorporated and when, so as to preserve users’ sense of presence in VR. For interaction with objects and peripherals, we found that selectively presenting reality as users engaged with it was optimal in terms of performance and users’ sense of presence. Finally, we investigated how this selective, engagement-dependent approach could be applied in social environments, to support the user’s awareness of the proximity and presence of others
    • …
    corecore