63,127 research outputs found

    An Intelligent Data Mining System to Detect Health Care Fraud

    Get PDF
    The chapter begins with an overview of the types of healthcare fraud. Next, there is a brief discussion of issues with the current fraud detection approaches. The chapter then develops information technology based approaches and illustrates how these technologies can improve current practice. Finally, there is a summary of the major findings and the implications for healthcare practice

    Protecting Patient Privacy: Strategies for Regulating Electronic Health Records Exchange

    Get PDF
    The report offers policymakers 10 recommendations to protect patient privacy as New York state develops a centralized system for sharing electronic medical records. Those recommendations include:Require that the electronic systems employed by HIEs have the capability to sort and segregate medical information in order to comply with guaranteed privacy protections of New York and federal law. Presently, they do not.Offer patients the right to opt-out of the system altogether. Currently, people's records can be uploaded to the system without their consent.Require that patient consent forms offer clear information-sharing options. The forms should give patients three options: to opt-in and allow providers access to their electronic medical records, to opt-out except in the event of a medical emergency, or to opt-out altogether.Prohibit and sanction the misuse of medical information. New York must protect patients from potential bad actors--that small minority of providers who may abuse information out of fear, prejudice or malice.Prohibit the health information-sharing networks from selling data. The State Legislature should pass legislation prohibiting the networks from selling patients' private health information

    Secure and Trustable Electronic Medical Records Sharing using Blockchain

    Full text link
    Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall costComment: AMIA 2017 Annual Symposium Proceeding

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur
    corecore