474 research outputs found

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    Research on network anycast

    Full text link
    Anycast is defined as a service in IPv6, which provides stateless best effort delivery of an anycast datagram to at least one, and preferably only one host. It is a topic of increasing interest. This paper is an attempt to gather and report on the work done on anycast. There are two main categories at present: network-layer anycast and application-layer anycast. Both involve anycast architectures, routing algorithms, metrics, applications, etc. We also present an efficient algorithm for application-layer anycast, and point out possible research directions based on our research. <br /

    An anycast based feedback aggregation scheme for efficient network transparency in cross-layer design

    Get PDF
    To ensure Quality of Service for multimedia data sessions in next generation mobile telecommunication systems, jointly-optimized cross-layer architectures were introduced recently. Such shemes usually require an adaptive media source which is able to modify the main parameters of ongoing connections by transferring control and feedback information via the network and through different protocol layers from application layer to physical layer and vice versa, according to the actual state of the path between peer nodes. This concept of transmitting cross-layer information is referred as network transparency in the literature, meaning that the underlying infrastructure is almost invisible to all the entities involved in joint optimization due to the continuous conveyance of cross-layer feedbacks. In this paper we introduce and evaluate a possible solution for reducing the network overhead caused by this volume of information exchange. Our soulution is based on the anycasting communication paradigm and creates a hierarchical data aggregation scheme allowing to adapt each entity of the multimedia transmission chain based on frequent feedbacks and even so in a low-bandwitdh manner

    SURVEY OF VEHICLE AD-HOC NETWORK

    Get PDF
    The communication is done in between cars that is based on the short range wireless technology. It become safety road and travel comfort using ad-hoc network. We see the different to communication mode in car network. Also we see the Geonetworking with car network. IPv6 is considered as the most appropriate technologies to support communication in VANET thanks to its extended address space, enhanced mobility support, ease of configuration and embedded security

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Implementation of Multicast Routing on IPv4 and IPv6 Networks

    Get PDF
    Fast developing world of technology, multimedia applications are quickly growing their performance into the Internet and shared networks. Multicast routing protocols sprint over unicast routing protocols to endow with well-organized routing of such applications. This research paper intended to considerate how the transition from Internet Protocol version 4 to Internet Protocol version 6 would influence multicast routing. The multicast routing protocol was used over both Internet Protocol version 4 and Internet Protocol version 6 and a mixed Internet Protocol version 4 - Internet Protocol version 6. Netwok parameters such as overhead, throughput and jitter network are evaluated

    A Survey of IP Address for Next Generation Internet Services

    Get PDF
    This paper surveys the problem of the astronomical growing demand of Internet Systems participating in the public network which has led to the depletion of allocated Internet Protocol version 4.0 (IPV4) addresses. Already, four out of the Regional Internet Registry (RIR) namely: ARNIC, RIPE, LACNIC and ARPIN have exhausted their allocated IPV4 addresses while the fifth AFRICNIC (Africa’s RIR) is reportedly depleted. We also examine the limitations of IPV4, the features of IPV6 and different modes of operating IPV6 standard. Findings shows that the current population of the world is over 6billion people with a projection of 9billion people by the year 2050 and IPV6 can conveniently accommodate 2128 devices. This paper also proposes the migration from the present Internet Protocol version 4.0(IPV4) to a new Internet Protocol version 6.0(IPV6) addresses. This research work has shown that deploying the IPV6 could only be the possible solution to sustaining Internet Services globally. Keywords: Internet Systems, Internet Protocol Address, IP address depletion, Migration

    Uma solução IPSec para comunicações seguras Anycast em redes IPv6

    Get PDF
    Neste artigo faz-se um levantamento do estado de arte das tecnologias Anycast e IPSec, testam-se as implementações existentes conjuntamente em cenários reais, e propõe-se uma solução capaz de permitir comunicações seguras entre um cliente e um conjunto de servidores com um mesmo endereço anycast. A solução proposta é totalmente baseada no IPSec e a sua utilização não implica nenhuma alteração às tecnologias usadas

    Performance evaluation of multicast routing on IPv4 and IPv6 networks

    Get PDF
    Even though the transition from IPv4 to IPv6 has not been realized at the pace that it was anticipated, eventually with the depletion of IPv4 address space and the ever-growing demands of the Internet, the transition is inevitable. In the rapidly evolving world of technology, multimedia applications and voice/video conferencing are fast finding their ways into the Internet and corporate networks. Multicast routing protocols run over unicast routing protocols to provide efficient routing of such applications. This thesis was aimed at understanding how the transition from IPv4 to IPv6 would impact multicast routing. The multicast routing protocol Protocol Independent Multicast-Sparse Mode (PIM-SM) was used over both IPv4 and IPv6 networks and a mixed IPv4-IPv6 network. Parameters such as protocol overheads, throughput and jitter were evaluated in a lab environment using jperf
    corecore