150 research outputs found

    Machine learning and mapping algorithms applied to proteomics problems

    Get PDF
    Proteins provide evidence that a given gene is expressed, and machine learning algorithms can be applied to various proteomics problems in order to gain information about the underlying biology. This dissertation applies machine learning algorithms to proteomics data in order to predict whether or not a given peptide is observable by mass spectrometry, whether a given peptide can serve as a cell penetrating peptide, and then utilizes the peptides observed through mass spectrometry to aid in the structural annotation of the chicken genome. Peptides observed by mass spectrometry are used to identify proteins, and being able to accurately predict which peptides will be seen can allow researchers to analyze to what extent a given protein is observable. Cell penetrating peptides can possibly be utilized to allow targeted small molecule delivery across cellular membranes and possibly serve a role as drug delivery peptides. Peptides and proteins identified through mass spectrometry can help refine computational gene models and improve structural genome annotations

    Machine learning applications in proteomics research: How the past can boost the future

    Get PDF
    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis.acceptedVersio

    Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics

    Get PDF
    Timm W, Scherbart A, Boecker S, Kohlbacher O, Nattkemper TW. Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics. BMC Bioinformatics. 2008;9(1):443.Background: Mass spectrometry is a key technique in proteomics and can be used to analyze complex samples quickly. One key problem with the mass spectrometric analysis of peptides and proteins, however, is the fact that absolute quantification is severely hampered by the unclear relationship between the observed peak intensity and the peptide concentration in the sample. While there are numerous approaches to circumvent this problem experimentally (e. g. labeling techniques), reliable prediction of the peak intensities from peptide sequences could provide a peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute quantification. Results: In this work we present machine learning techniques for peak intensity prediction for MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-based features were extracted. A feature subset was obtained from multiple forward feature selections on the extracted features. Based on these features, two advanced machine learning methods (support vector regression and local linear maps) are shown to yield good results for this problem (Pearson correlation of 0.68 in a ten-fold cross validation). Conclusion: The techniques presented here are a useful first step going beyond the binary prediction of proteotypic peptides towards a more quantitative prediction of peak intensities. These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative proteomics

    Artificial Intelligence Understands Peptide Observability and Assists With Absolute Protein Quantification

    Get PDF
    Targeted mass spectrometry has become the method of choice to gain absolute quantification information of high quality, which is essential for a quantitative understanding of biological systems. However, the design of absolute protein quantification assays remains challenging due to variations in peptide observability and incomplete knowledge about factors influencing peptide detectability. Here, we present a deep learning algorithm for peptide detectability prediction, d::pPop, which allows the informed selection of synthetic proteotypic peptides for the successful design of targeted proteomics quantification assays. The deep neural network is able to learn a regression model that relates the physicochemical properties of a peptide to its ion intensity detected by mass spectrometry. The approach makes use of experimentally detected deviations from the assumed equimolar abundance of all peptides derived from a given protein. Trained on extensive proteomics datasets, d::pPop's plant and non-plant specific models can predict the quality of proteotypic peptides for not yet experimentally identified proteins. Interrogating the deep neural network after learning from ~76,000 peptides per model organism allows to investigate the impact of different physicochemical properties on the observability of a peptide, thus providing insights into peptide observability as a multifaceted process. Empirical evaluation with rank accuracy metrics showed that our prediction approach outperforms existing algorithms. We circumvent the delicate step of selecting positive and negative training sets and at the same time also more closely reflect the need for selecting the top most promising peptides for targeting a protein of interest. Further, we used an artificial QconCAT protein to experimentally validate the observability prediction. Our proteotypic peptide prediction approach not only facilitates the design of absolute protein quantification assays via a user-friendly web interface but also enables the selection of proteotypic peptides for not yet observed proteins, hence rendering the tool especially useful for plant research

    VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates.</p> <p>Results</p> <p>VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (<it>Yersinia pestis </it>Pestoides F and <it>Synechococcus </it>sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data.</p> <p>Conclusions</p> <p>VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at <url>https://www.biopilot.org/docs/Software/Vespa.php</url>.</p

    A Survey of Proteomic Biomarkers for Heterotopic Ossification in Blood Serum

    Get PDF
    Background: Heterotopic ossification (HO) is a significant problem for wounded warriors surviving high-energy blast injuries; however, currently, there is no biomarker panel capable of globally characterizing, diagnosing, and monitoring HO progression. The aim of this study was to identify biomarkers for HO using proteomic techniques and blood serum. Methods: Isobaric tags for relative and absolute quantitation (iTRAQ) was used to generate a semi-quantitative global proteomics survey of serum from patients with and without heterotopic ossification. Leveraging the iTRAQ data, a targeted selection reaction monitoring mass spectrometry (SRM-MS) assay was developed for 10 protein candidates: alkaline phosphatase, osteocalcin, alpha-2 type I collagen, collagen alpha-1(V) chain isoform 2 preprotein, bone sialoprotein 2, phosphatidate phosphatase LPIN2, osteomodulin, protein phosphatase 1J, and RRP12-like protein. Results: The proteomic survey of serum from both healthy and disease patients includes 1220 proteins and was enriched for proteins involved in the response to elevated platelet Ca+2, wound healing, and extracellular matrix organization. Proteolytic peptides from three of the ten SRM-MS proteins, osteocalcin preprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein from serum, are potential clinical biomarkers for HO. Conclusions: This study is the first reported SRM-MS analysis of serum from individuals with and without heterotopic ossification, and differences in the serum proteomic profile between healthy and diseased subjects were identified. Furthermore, our results indicate that normal wound healing signals can impact the ability to identify biomarkers, and a multi-protein panel assay, including osteocalcin preproprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein, may provide a solution for HO detection and monitoring

    Protein inference based on peptides identified from tandem mass spectra

    Get PDF
    Protein inference is a critical computational step in the study of proteomics. It lays the foundation for further structural and functional analysis of proteins, based on which new medicine or technology can be developed. Today, mass spectrometry (MS) is the technique of choice for large-scale inference of proteins in proteomics. In MS-based protein inference, three levels of data are generated: (1) tandem mass spectra (MS/MS); (2) peptide sequences and their scores or probabilities; and (3) protein sequences and their scores or probabilities. Accordingly, the protein inference problem can be divided into three computational phases: (1) process MS/MS to improve the quality of the data and facilitate subsequent peptide identification; (2) postprocess peptide identification results from existing algorithms which match MS/MS to peptides; and (3) infer proteins by assembling identified peptides. The addressing of these computational problems consists of the main content of this thesis. The processing of MS/MS data mainly includes denoising, quality assessment, and charge state determination. Here, we discuss the determination of charge states from MS/MS data using low-resolution collision induced dissociation. Such spectra with multiple charges are usually searched multiple times by assuming each possible charge state. Not only does this strategy increase the overall database search time, but also yields more false positives. Hence, it is advantageous to determine the charge states of such spectra before the database search. A new approach is proposed to determine the charge states of low-resolution MS/MS. Four novel and discriminant features are adopted to describe each MS/MS and are used in Gaussian mixture model to distinguish doubly and triply charged peptides. The results have shown that this method can assign charge states to low-resolution MS/MS more accurately than existing methods. Many search engines are available for peptide identification. However, there is usually a high false positive rate (FPR) in the results. This can bring many false identifications to protein inference. As a result, it is necessary to postprocess peptide identification results. The most commonly used method is performing statistical analysis, which does not only make it possible to compare and combine the results from different search engines, but also facilitates subsequent protein inference. We proposed a new method to estimate the accuracy of peptide identification with logistic regression (LR) and exemplify it based on Sequest scores. Each peptide is characterized with the regularized Sequest scores ΔCn∗ and Xcorr∗. The score regularization is formulated as an optimization problem by applying two assumptions: the smoothing consistency between sibling peptides and the fitting consistency between original scores and new scores. The results have shown that the proposed method can robustly assign accurate probabilities to peptides and has a very high discrimination power, higher than that of PeptideProphet, to distinguish correctly and incorrectly identified peptides. Given identified peptides and their probabilities, protein inference is conducted by assembling these peptides. Existing methods to address this MS-based protein inference problem can be classified into two groups: twostage and one unified framework to identify peptides and infer proteins. In two-stage methods, protein inference is based on, but also separated from, peptide identification. Whereas in one unified framework, protein inference and peptide identification are integrated together. In this study, we proposed a unified framework for protein inference, and developed an iterative method accordingly to infer proteins based on Sequest peptide identification. The statistical analysis of peptide identification is performed with the LR previously introduced. Protein inference and peptide identification are iterated in one framework by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update the adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. The results have shown that the proposed method can infer more true positive proteins, while outputting less false positive proteins than ProteinProphet at the same FPR. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS spectrum and the improvement of their scores by the feedback from the inferred proteins
    corecore