3 research outputs found

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    Deep Architectures for Visual Recognition and Description

    Get PDF
    In recent times, digital media contents are inherently of multimedia type, consisting of the form text, audio, image and video. Several of the outstanding computer Vision (CV) problems are being successfully solved with the help of modern Machine Learning (ML) techniques. Plenty of research work has already been carried out in the field of Automatic Image Annotation (AIA), Image Captioning and Video Tagging. Video Captioning, i.e., automatic description generation from digital video, however, is a different and complex problem altogether. This study compares various existing video captioning approaches available today and attempts their classification and analysis based on different parameters, viz., type of captioning methods (generation/retrieval), type of learning models employed, the desired output description length generated, etc. This dissertation also attempts to critically analyze the existing benchmark datasets used in various video captioning models and the evaluation metrics for assessing the final quality of the resultant video descriptions generated. A detailed study of important existing models, highlighting their comparative advantages as well as disadvantages are also included. In this study a novel approach for video captioning on the Microsoft Video Description (MSVD) dataset and Microsoft Video-to-Text (MSR-VTT) dataset is proposed using supervised learning techniques to train a deep combinational framework, for achieving better quality video captioning via predicting semantic tags. We develop simple shallow CNN (2D and 3D) as feature extractors, Deep Neural Networks (DNNs and Bidirectional LSTMs (BiLSTMs) as tag prediction models and Recurrent Neural Networks (RNNs) (LSTM) model as the language model. The aim of the work was to provide an alternative narrative to generating captions from videos via semantic tag predictions and deploy simpler shallower deep model architectures with lower memory requirements as solution so that it is not very memory extensive and the developed models prove to be stable and viable options when the scale of the data is increased. This study also successfully employed deep architectures like the Convolutional Neural Network (CNN) for speeding up automation process of hand gesture recognition and classification of the sign languages of the Indian classical dance form, ‘Bharatnatyam’. This hand gesture classification is primarily aimed at 1) building a novel dataset of 2D single hand gestures belonging to 27 classes that were collected from (i) Google search engine (Google images), (ii) YouTube videos (dynamic and with background considered) and (iii) professional artists under staged environment constraints (plain backgrounds). 2) exploring the effectiveness of CNNs for identifying and classifying the single hand gestures by optimizing the hyperparameters, and 3) evaluating the impacts of transfer learning and double transfer learning, which is a novel concept explored for achieving higher classification accuracy
    corecore