74 research outputs found

    A second derivative SQP method: local convergence

    Get PDF
    In [19], we gave global convergence results for a second-derivative SQP method for minimizing the exact ℓ1-merit function for a fixed value of the penalty parameter. To establish this result, we used the properties of the so-called Cauchy step, which was itself computed from the so-called predictor step. In addition, we allowed for the computation of a variety of (optional) SQP steps that were intended to improve the efficiency of the algorithm. \ud \ud Although we established global convergence of the algorithm, we did not discuss certain aspects that are critical when developing software capable of solving general optimization problems. In particular, we must have strategies for updating the penalty parameter and better techniques for defining the positive-definite matrix Bk used in computing the predictor step. In this paper we address both of these issues. We consider two techniques for defining the positive-definite matrix Bk—a simple diagonal approximation and a more sophisticated limited-memory BFGS update. We also analyze a strategy for updating the penalty paramter based on approximately minimizing the ℓ1-penalty function over a sequence of increasing values of the penalty parameter.\ud \ud Algorithms based on exact penalty functions have certain desirable properties. To be practical, however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show that a nonmonotone varient of our algorithm avoids this phenomenon and, therefore, results in asymptotically superlinear local convergence; this is verified by preliminary numerical results on the Hock and Shittkowski test set

    A Simple SQP Algorithm for Constrained Finite Minimax Problems

    Get PDF

    A new SQP algorithm and numerical experiments for nonlinear inequality constrained optimization problem

    Full text link

    A Partially Feasible Distributed SQO Method for Two-block General Linearly Constrained Smooth Optimization

    Full text link
    This paper discusses a class of two-block smooth large-scale optimization problems with both linear equality and linear inequality constraints, which have a wide range of applications, such as economic power dispatch, data mining, signal processing, etc.Our goal is to develop a novel partially feasible distributed (PFD) sequential quadratic optimization (SQO) method (PFD-SQO method) for this kind of problems. The design of the method is based on the ideas of SQO method and augmented Lagrangian Jacobian splitting scheme as well as feasible direction method,which decomposes the quadratic optimization (QO) subproblem into two small-scale QOs that can be solved independently and parallelly. A novel disturbance contraction term that can be suitably adjusted is introduced into the inequality constraints so that the feasible step size along the search direction can be increased to 1. The new iteration points are generated by the Armijo line search and the partially augmented Lagrangian function that only contains equality constraints as the merit function. The iteration points always satisfy all the inequality constraints of the problem. The theoretical properties, such as global convergence, iterative complexity, superlinear and quadratic rates of convergence of the proposed PFD-SQO method are analyzed under appropriate assumptions, respectively. Finally, the numerical effectiveness of the method is tested on a class of academic examples and an economic power dispatch problem, which shows that the proposed method is quite promising

    On the constant positive linear dependence condition and its application to SQP methods

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence

    Full text link

    Kontinuierliche Optimierung und Industrieanwendungen

    Get PDF
    [no abstract available
    corecore