440 research outputs found

    A super-nyquist architecture for reliable underwater acoustic communication

    Get PDF
    A natural joint physical and link layer transmission architecture is developed for communication over underwater acoustic channels, based on the concept of super-Nyquist (SNQ) signaling. In such systems, the signaling rate is chosen significantly higher than the Nyquist rate of the system. We show that such signaling can be used in conjunction with good "off- the-shelf" base codes, simple linear redundancy, and minimum mean-square error decision feedback equalization (MMSE-DFE) to produce highly efficient, low complexity rateless (i.e., "fountain") codes for the severe time-varying intersymbol-interference channels typical of this application. We show that not only can SNQ rateless codes approach capacity arbitrarily closely, but even particularly simple SNQ-based rateless codes require the transmission of dramatically fewer packets than does traditional ARQ with Chase combining.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-07-1-0738)United States. Air Force Office of Scientific Research (Grant FA9550-11-1-0183)Israel Science Foundation (Grant 1557/10

    A super-nyquist architecture for rateless underwater acoustic communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 135-136).Oceans cover about 70 percent of Earth's surface. Despite the abundant resources they contain, much of them remain unexplored. Underwater communication plays a key role in the area of deep ocean exploration. It is also essential in the field of the oil and fishing industry, as well as for military use. Although research on communicating wirelessly in the underwater environment began decades ago, it remains a challenging problem due to the oceanic medium, in which dynamic movements of water and rich scattering are commonplace. In this thesis, we develop an architecture for reliably communicating over the underwater acoustic channel. A notable feature of this architecture is its rateless property: the receiver simply collects pieces of transmission until successful decoding is possible. With this, we aim to achieve capacity-approaching communication under a variety of a priori unknown channel conditions. This is done by using a super-Nyquist (SNQ) transmission scheme. Several other important technologies are also part of the design, among them dithered repetition coding, adaptive decision feedback equalization (DFE), and multiple-input multiple-output (MIMO) communication. We present a complete block diagram for the transmitter and receiver architecture for the SNQ scheme. We prove the sufficiency of the architecture for optimality, and we show through analysis and simulation that as the SNQ signaling rate increases, the SNQ scheme is indeed capacity-achieving. At the end, the performance of the proposed SNQ scheme and its transceiver design are tested in physical experiments, whose results show that the SNQ scheme achieves a significant gain in reliable communication rate over conventional (non-SNQ) schemes.by Qing He.S.M

    DSP implementation of OFDM acoustic modem

    Get PDF
    The success of multicarrier modulation in the form of OFDM in radio channels illuminates a path one could take towards high-rate underwater acoustic communications,and recently there are intensive investigations on underwater OFDM. Processing power has increased to a point where orthogonal frequency division multiplexing (OFDM) has become feasible and economical. Since many wireless communication systems being developed use OFDM, it is a worthwhile research topic. Some examples of applications using OFDM include Digital subscriber line (DSL), Digital Audio Broadcasting (DAB),High definition television (HDTV) broadcasting, IEEE 802.11 (wireless networking standard).OFDM is a strong candidate and has been suggested or standardized in high speed communication systems. In this Thesis in first phase ,we analyzes the factor that affects the OFDM performance. The performance of OFDM was assessed by using computer simulations performed using Matlab7.2 .it was simulated under Additive white Gaussian noise (AWGN) ,Exponential Multipath channel and Carrier frequency offset conditions for different modulation schemes like binary phase shift keying (BPSK), Quadrature phase shift keying (QPSK),16 Quadrature amplitude modulation (16-QAM),64-Quadrature amplitude modulation(64-QAM)which are used for achieving high data rates.In second phase we implement the acoustic OFDM transmitter and receiver design of [4,5] on a TMS320C6713 DSP board. We analyze the workload and identify the most timeconsuming operations. Based on the workload analysis, we tune the algorithms and optimize the code to substantially reduce the synchronization time to 0.2 seconds and the processing time of one OFDM block to 2.7235 seconds on a DSP processor at 225 MHz. This experimentation provides guidelines on our future work to reduce the per-block processing time to be less than the block duration of 0.23 seconds for real time operations

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Direct-form adaptive equalization for underwater acoustic communication

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012Adaptive equalization is an important aspect of communication systems in various environments. It is particularly important in underwater acoustic communication systems, as the channel has a long delay spread and is subject to the effects of time- varying multipath fading and Doppler spreading. The design of the adaptation algorithm has a profound influence on the performance of the system. In this thesis, we explore this aspect of the system. The emphasis of the work presented is on applying concepts from inference and decision theory and information theory to provide an approach to deriving and analyzing adaptation algorithms. Limited work has been done so far on rigorously devising adaptation algorithms to suit a particular situation, and the aim of this thesis is to concretize such efforts and possibly to provide a mathematical basis for expanding it to other applications. We derive an algorithm for the adaptation of the coefficients of an equalizer when the receiver has limited or no information about the transmitted symbols, which we term the Soft-Decision Directed Recursive Least Squares algorithm. We will demonstrate connections between the Expectation-Maximization (EM) algorithm and the Recursive Least Squares algorithm, and show how to derive a computationally efficient, purely recursive algorithm from the optimal EM algorithm. Then, we use our understanding of Markov processes to analyze the performance of the RLS algorithm in hard-decision directed mode, as well as of the Soft-Decision Directed RLS algorithm. We demonstrate scenarios in which the adaptation procedures fail catastrophically, and discuss why this happens. The lessons from the analysis guide us on the choice of models for the adaptation procedure. We then demonstrate how to use the algorithm derived in a practical system for underwater communication using turbo equalization. As the algorithm naturally incorporates soft information into the adaptation process, it becomes easy to fit it into a turbo equalization framework. We thus provide an instance of how to use the information of a turbo equalizer in an adaptation procedure, which has not been very well explored in the past. Experimental data is used to prove the value of the algorithm in a practical context.Support from the agencies that funded this research- the Academic Programs Office at WHOI and the Office of Naval Research (through ONR Grant #N00014-07-10738 and #N00014-10-10259)

    A micro-transponder for precision tracking of underwater targets

    Get PDF
    A prototype micro-transponder has been designed and built to track, in real-time, the positions of objects or animals within the water column. Commercially available data storage tags, which help monitor the behavior of underwater animals, do not provide real-time interrogation and data dissemination capabilities in a form factor and acoustic frequency band acceptable for active tracking applications. This prototype is 18.5 cm3 and weighs 43.7 g in air. It operates at an acoustic frequency of 160 kHz and uses a mixed-signal topology with low-power components and a microcontroller, which allows for firmware updates and addition of external sensors. It is powered by a lithium battery that provides enough energy for an 8-day deployment at a 1-second interrogation interval. Tests carried out in a tank confirmed the functionality of the design with coded replies being transmitted at source levels of 167 dB re 1 microPa at 1 m

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Bearing Based Low Cost Underwater Acoustic Positioning System

    Get PDF
    The Ocean Robotics turned into one of the major fields of research since the exploration of oceans brings many benefits to the human condition. Remotely operated vehicles (ROVs) and Autonomous Surface Vehicles (ASVs) are the common instruments used in this medium, since they prevent human losses and enable more and reliable data for the projects they are inserted in. Most scenarios include support vehicles such as ASVs for monitoring purposes since they are able to use specialized positioning systems such as Global Positioning System (GPS), which are ineffective in underwater environments. This is due to electromagnetic signals used by GPS being attenuated by the medium. As an alternative, acoustic solutions are used. Underwater Acoustic Positioning Systems (UAPSs) have always been an important field of study being used in multiple marine applications. Acoustic fish tracking allows for behavioural and in-situ fish population studies. This process usually involves tagging fishes with acoustic emitters (i.e. tags) and the usage of acoustic receivers. Robotic autonomous vehicles can then be used to carry the acoustic receivers in order to dynamically cover a greater mission area, improving the efficiency of the localization of acoustic sources. An acoustic tag detector was developed to have real-time detection and identification of acoustic signals. A Direction of Arrival (DoA) algorithm was developed from ground up to enable tracking applications. This dissertation presents the improved results of this new system as well as the tests that were made to the DoA algorithm in a simulated environment. Additionally, the position estimation is improved using a Kalman Filter. This work was developed in the context of the MYTAG Portuguese R&D project, addressing the study and characterization of European flounder migrations and to be applied to any target that has a known acoustic signals. One of the objectives of this project is to eventually use an ASV to track a set of flounders, namely with the ROAZ ASV. The use of an unmanned surface vehicle allows for a non-static baseline. In the proposed solution the acoustic signals are tracked with a system composed of three acoustic receivers that are linked to the same computer using a synchronized time source. Not only that but this solution provides two possible methods for the main objective which is to track targets. These methods enable the possibility to estimate the target’s position in the world, while developing a low-cost solution with a newly developed DoA algorithm
    corecore