144 research outputs found

    suppression of dc link voltage unbalance in three level neutral point clamped converters

    Get PDF
    Abstract Two different control approaches for suppressing DC-link voltage unbalance in Three-Level Neutral-Point Clamped Converters (NPCs) are presented in this paper. They both guarantee DC-link voltage equalization over any NPC operating conditions, i.e. when the NPC feeds or is supplied by the main AC grid at different active and/or reactive power rates. The proposed control approaches consist of either a hysteresis or a proportional regulator, each of which synthesizes the most suitable control action based on the actual DC-link voltage unbalance. Particularly, two different PWM techniques have been developed in order to achieve DC-link voltage equalization successfully, preserving NPC voltage and current waveforms at the same time. The performances achievable by means of both the proposed control approaches have been compared to each other through an extensive simulation study in order to highlight their most important advantages and drawbacks, as well as their effectiveness over any operating conditions. Particularly, both control approaches are validated in the Matlab-Simulink environment referring to DC-link voltage equalization of an NPC that represents the point of common coupling between a DC microgrid and the main AC grid

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Contributions to Modulation and Control Algorithms for Multilevel Converters

    Get PDF
    Las actuales tendencias de la red eléctrica han lanzado a la industria a la búsqueda de sistemas de generación, distribución y consumo de energía eléctrica más eficientes. Generación distribuida, reducción de componentes pasivos, líneas DC de alta tensión son, entre otras, las posibles líneas de investigación que están actualmente siendo consideradas como el futuro de la red eléctrica. Sin embargo, nada de esto sería posible si no fuera por los avances alcanzados en el campo de la electrónica de potencia. El trabajo aquí presentado comienza con una breve introducción a la electrónica de potencia, concretamente a los convertidores de potencia conectados a red, sus estrategias de control más comunes y enfoques ante redes desbalanceadas. A continuación, las contribuciones del autor sobre el control y modulación de una topología particular de convertidores, conocidos como convertidores multinivel, se presentan como el principal contenido de este trabajo. Este tipo de convertidores mejoran la eficiencia y ciertas prestaciones, en comparación con convertidores más tradicionales, a costa de una mayor complejidad en el control al incrementar la cantidad de los componentes hardware. A pesar de que existen numerosas topologías de convertidores multinivel y algunas de ellas son brevemente expuestas en este trabajo, la mayoría de las aportaciones están enfocadas para convertidores del tipo diode-clamped converter. Adicionalmente, se incluye una aportación para convertidores del tipo multinivel modular, y otra para convertidores en cascada. Se espera que el contenido de la introducción de este trabajo, junto a las contribuciones particulares para convertidores multinivel sirva de inspiración para futuros investigadores del campo

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version

    High-power medium-voltage motor drive: converter topology, modulation, and control

    Get PDF
    The output power quality, device voltage sharing, power converter flying capacitor voltage ripple and motor torque ripple at low-frequency/ speed operation are the major issues in high-power medium-voltage (MV) motor drives. In this thesis, a new four-level multilevel converter (4L-MLC) is proposed for MV drive applications. The proposed converter does not require series connection of devices, thereby the voltage sharing problems will be eliminated. Also, the new MLC does not require any isolated direct current (DC) sources and eliminates the need of complex phase-shifting transformer. Furthermore, the proposed MLC is also suitable for back-to-back operation due to the presence of a common DC-link. [...

    A method for the suppression of fluctuations in the neutral-point potential of a three-level NPC inverter with a capacitor-voltage loop

    Get PDF
    This paper investigates the problem of fluctuation of the neutral-point potential (NPP) in a three-level NPC inverter with a capacitor-voltage loop. The phase pulse width duty cycle disturbance PWM method is proposed to suppress the NPP fluctuation efficiently. Based on the basic carrier-based Phase Disposition (PD) PWM method, the average pulse neutral-point current model is established. Then the frequency, amplitude and equivalent initial phase of the NPP fluctuation are analyzed based on the current model. According to the alternating error of the DC-link capacitor voltages, a capacitor-voltage loop with a quasi PR (proportional resonant) controller is presented. The control variable, which varies with the modulation index, phase current, load power factor, etc, can be obtained from the quasi PR controller. Finally, an experimental three-level NPC inverter is described and the validity and feasibility of the proposed method are verified by experimental results

    Study of the HVDC dual transmission system under faults in the power converters

    Get PDF
    Trabalho apresentado no Speedam 2016, 22-24 de junho de 2016, Capri, ItáliaHVDC transmission systems based on voltage source converters have lately emerged as a good alternative to conventional AC transmission. In these transmission systems multilevel converters have become a promising energy conversion technology. The reliability of the power converters are extremely important since a fault in these equipments may lead to an unavailability for a long period of the transmission system. Thus, this paper will focuses in HVDC dual transmission system under semiconductor failure conditions. As presented in this paper this structure presents interesting characteristics under the point of view the reliability considering a power semiconductor failure. It will present the consequences for the transmission system when there is a semiconductor fault. A study for the change of the modulation system in order to ensure DC link capacitors voltage balance under a fault condition is also presented. Simulation studies are shown in order to confirm the characteristics of the proposed methodology in normal and fault condition mode.N/

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    Cascaded Converters For Integration And Management Of Grid Level Energy Storage Systems

    Get PDF
    ABSTRACT CASCADED CONVERTERS FOR INTEGRATION AND MANAGEMENT OF GRID-LEVEL ENERGY STORAGE SYSTEMS by ZUHAIR ALAAS December 2017 Advisor: Dr. Caisheng Wang Major: ELECTRICAL ENGINEERING Degree: Doctor of Philosophy This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing

    Improved harmonic performance of cascaded H-Bridge converters with thermal control

    Get PDF
    Among multilevel converter topologies, the cascaded H-bridge converter (CHB) is one suitable solution for multiple applications such as flexible ac transmission systems and motor drives. CHB presents a natural high modularity because it is formed by the serial connection of H-bridges. This paper deals with a CHB where the cells do not have the same aging because the maintenance during the years of operation forces to replace some damaged cells of the converter with new or repaired ones. A method based on clamping one power cell can be used to reduce the power losses of that cell reducing its temperature and increasing its lifetime. However, clamping one cell of the CHB introduces high harmonic distortion around twice the carrier frequency due to the CHB unbalanced operation when a conventional phase-shifted PWM is applied. A deep harmonic distortion analysis of the CHB output voltage with thermal control based on clamping one cell is presented. Using this analysis, the harmonic distortion at twice the carrier frequency is eliminated applying a non-conventional phase-shifted PWM where the angles between the carriers of consecutive power cells are modified. Experimental results show how the thermal control applying the clamping of a power cell is achieved whilst the harmonic distortion around twice the carrier frequency is eliminated
    corecore