40 research outputs found

    A Successively Refinable Lossless Image-Coding Algorithm

    Full text link

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    Setting priorities: a new SPIHT-compatible algorithm for image compression

    Get PDF
    We introduce a new algorithm for progressive or multiresolution image compression. The algorithm improves on the Set Partitioning in Hierarchical Trees (SPIHT) algorithm by replacing the SPIHT encoder. The new encoder optimizes the multiresolution code performance relative to a user- defined probability distribution over the code's rates or resolutions. The new algorithm's decoder is identical to the SPIHT decoder. The resulting code achieves the optimal expected performance across resolutions subject to the constraints imposed by the use of the SPIHT decoder and the distribution over resolutions set by the user. The encoder optimization yields performance improvements at the rates or resolutions of greatest importance at the expense of performance degradation at low priority rates or resolutions. The algorithm is fully compatible at the decoder with the original SPIHT algorithm. In particular, the decoder requires no knowledge of the priority function employed at the encoder. Experimental results on an image containing both text and photographic material yield up to 0.86 dB performance improvement over SPIHT at the resolution of highest priority

    Quantization as Histogram Segmentation: Optimal Scalar Quantizer Design in Network Systems

    Get PDF
    An algorithm for scalar quantizer design on discrete-alphabet sources is proposed. The proposed algorithm can be used to design fixed-rate and entropy-constrained conventional scalar quantizers, multiresolution scalar quantizers, multiple description scalar quantizers, and Wyner–Ziv scalar quantizers. The algorithm guarantees globally optimal solutions for conventional fixed-rate scalar quantizers and entropy-constrained scalar quantizers. For the other coding scenarios, the algorithm yields the best code among all codes that meet a given convexity constraint. In all cases, the algorithm run-time is polynomial in the size of the source alphabet. The algorithm derivation arises from a demonstration of the connection between scalar quantization, histogram segmentation, and the shortest path problem in a certain directed acyclic graph

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples

    Setting priorities: a new SPIHT-compatible algorithm for image compression

    Get PDF
    We introduce a new algorithm for progressive or multiresolution image compression. The algorithm improves on the Set Partitioning in Hierarchical Trees (SPIHT) algorithm by replacing the SPIHT encoder. The new encoder optimizes the multiresolution code performance relative to a user- defined probability distribution over the code's rates or resolutions. The new algorithm's decoder is identical to the SPIHT decoder. The resulting code achieves the optimal expected performance across resolutions subject to the constraints imposed by the use of the SPIHT decoder and the distribution over resolutions set by the user. The encoder optimization yields performance improvements at the rates or resolutions of greatest importance at the expense of performance degradation at low priority rates or resolutions. The algorithm is fully compatible at the decoder with the original SPIHT algorithm. In particular, the decoder requires no knowledge of the priority function employed at the encoder. Experimental results on an image containing both text and photographic material yield up to 0.86 dB performance improvement over SPIHT at the resolution of highest priority

    Layered Wyner-Ziv video coding for noisy channels

    Get PDF
    The growing popularity of video sensor networks and video celluar phones has generated the need for low-complexity and power-efficient multimedia systems that can handle multiple video input and output streams. While standard video coding techniques fail to satisfy these requirements, distributed source coding is a promising technique for ??uplink?? applications. Wyner-Ziv coding refers to lossy source coding with side information at the decoder. Based on recent theoretical result on successive Wyner-Ziv coding, we propose in this thesis a practical layered Wyner-Ziv video codec using the DCT, nested scalar quantizer, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information) for noiseless channel. The DCT is applied as an approximation to the conditional KLT, which makes the components of the transformed block conditionally independent given the side information. NSQ is a binning scheme that facilitates layered bit-plane coding of the bin indices while reducing the bit rate. LDPC code based Slepian-Wolf coding exploits the correlation between the quantized version of the source and the side information to achieve further compression. Different from previous works, an attractive feature of our proposed system is that video encoding is done only once but decoding allowed at many lower bit rates without quality loss. For Wyner-Ziv coding over discrete noisy channels, we present a Wyner-Ziv video codec using IRA codes for Slepian-Wolf coding based on the idea of two equivalent channels. For video streaming applications where the channel is packet based, we apply unequal error protection scheme to the embedded Wyner-Ziv coded video stream to find the optimal source-channel coding trade-off for a target transmission rate over packet erasure channel

    Coding with side information

    Get PDF
    Source coding and channel coding are two important problems in communications. Although side information exists in everyday scenario, the effect of side information is not taken into account in the conventional setups. In this thesis, we focus on the practical designs of two interesting coding problems with side information: Wyner-Ziv coding (source coding with side information at the decoder) and Gel??fand-Pinsker coding (channel coding with side information at the encoder). For WZC, we split the design problem into the two cases when the distortion of the reconstructed source is zero and when it is not. We review that the first case, which is commonly called Slepian-Wolf coding (SWC), can be implemented using conventional channel coding. Then, we detail the SWC design using the low-density parity-check (LDPC) code. To facilitate SWC design, we justify a necessary requirement that the SWC performance should be independent of the input source. We show that a sufficient condition of this requirement is that the hypothetical channel between the source and the side information satisfies a symmetry condition dubbed dual symmetry. Furthermore, under that dual symmetry condition, SWC design problem can be simply treated as LDPC coding design over the hypothetical channel. When the distortion of the reconstructed source is non-zero, we propose a practical WZC paradigm called Slepian-Wolf coded quantization (SWCQ) by combining SWC and nested lattice quantization. We point out an interesting analogy between SWCQ and entropy coded quantization in classic source coding. Furthermore, a practical scheme of SWCQ using 1-D nested lattice quantization and LDPC is implemented. For GPC, since the actual design procedure relies on the more precise setting of the problem, we choose to investigate the design of GPC as the form of a digital watermarking problem as digital watermarking is the precise dual of WZC. We then introduce an enhanced version of the well-known spread spectrum watermarking technique. Two applications related to digital watermarking are presented
    corecore