127 research outputs found

    Microstructural imaging of human neocortex in vivo

    Get PDF
    The neocortex of the human brain is the seat of higher brain function. Modern imaging techniques, chief among them magnetic resonance imaging (MRI), allow non-invasive imaging of this important structure. Knowledge of the microstructure of the neocortex has classically come from post-mortem histological studies of human tissue, and extrapolations from invasive animal studies. From these studies, we know that the scale of important neocortical structure spans six orders of magnitude, ranging from the size of axonal diameters (microns), to the size of cortical areas responsible for integrating sensory information (centimetres). MRI presents an opportunity to move beyond classical methods, because MRI is non-invasive and MRI contrast is sensitive to neocortical microstructure over all these length scales. MRI thus allows inferences to be made about neocortical microstructure in vivo, i.e. MRI-based in vivo histology. We review recent literature that has applied and developed MRI-based in vivo histology to probe the microstructure of the human neocortex, focusing specifically on myelin, iron, and neuronal fibre mapping. We find that applications such as cortical parcellation (using maps as proxies for myelin content) and investigation of cortical iron deposition with age (using maps) are already contributing to the frontiers of knowledge in neuroscience. Neuronal fibre mapping in the cortex remains challenging in vivo, but recent improvements in diffusion MRI hold promise for exciting applications in the near future. The literature also suggests that utilising multiple complementary quantitative MRI maps could increase the specificity of inferences about neocortical microstructure relative to contemporary techniques, but that further investment in modelling is required to appropriately combine the maps. In vivo histology of human neocortical microstructure is undergoing rapid development. Future developments will improve its specificity, sensitivity, and clinical applicability, granting an ever greater ability to investigate neuroscientific and clinical questions about the human neocortex

    A model-based cortical parcellation scheme for high-resolution 7 Tesla MRI data

    No full text

    Histological basis of laminar MRI patterns in high resolution images of fixed human auditory cortex

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images because of its relatively high myelin content. However, MR images are also affected by the iron content of the tissue and in this study we sought to confirm that different MR image contrasts did correlate with the myelin content in the grey matter and were not primarily affected by iron content as is the case in the primary visual and somatosensory areas. By imaging blocks of fixed post-mortem cortex in a 7 Tesla scanner and then sectioning them for histological staining we sought to assess the relative contribution of myelin and iron to the grey matter contrast in the auditory region. Evaluating the image contrast in T2*-weighted images and quantitative R2* maps showed a reasonably high correlation between the myelin density of the grey matter and the intensity of the MR images. The correlation with T1-weighted phase sensitive inversion recovery (PSIR) images was better than with the previous two image types, and there were clearly differentiated borders between adjacent cortical areas in these images. A significant amount of iron was present in the auditory region, but did not seem to contribute to the laminar pattern of the cortical grey matter in MR images. Similar levels of iron were present in the grey and white matter and although iron was present in fibres within the grey matter, these fibres were fairly uniformly distributed across the cortex. Thus we conclude that T1- and T2*-weighted imaging sequences do demonstrate the relatively high myelin levels that are characteristic of the deep layers in primary auditory cortex and allow it and some of the surrounding areas to be reliably distinguished

    Relating quantitative 7T MRI across cortical depths to cytoarchitectonics, gene expression and connectomics

    Get PDF
    Ultra-high field MRI across the depth of the cortex has the potential to provide ana- tomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 m whole brain acquisition to (a) layer-specific cell measures from the von Economo his- tology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expres- sion across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease

    Relating quantitative 7T MRI across cortical depths to cytoarchitectonics, gene expression and connectomics

    Get PDF
    Ultra‐high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer‐selective vulnerability. Here we compare multi‐parametric mapping (MPM) measures across cortical depths for a 7T 500 μm whole brain acquisition to (a) layer‐specific cell measures from the von Economo histology atlas, (b) layer‐specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high‐fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer‐specific cell number and layer‐specific gene expression. R1‐ and R2*‐weighted connectivity strength of cortico‐striatal and intra‐hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer‐specific relationships demonstrated are at least in part related to the high cross‐correlations of von Economo atlas cell counts and layer‐specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease

    Joint Total Variation ESTATICS for Robust Multi-Parameter Mapping

    Get PDF
    Quantitative magnetic resonance imaging (qMRI) derives tissue-specific parameters -- such as the apparent transverse relaxation rate R2*, the longitudinal relaxation rate R1 and the magnetisation transfer saturation -- that can be compared across sites and scanners and carry important information about the underlying microstructure. The multi-parameter mapping (MPM) protocol takes advantage of multi-echo acquisitions with variable flip angles to extract these parameters in a clinically acceptable scan time. In this context, ESTATICS performs a joint loglinear fit of multiple echo series to extract R2* and multiple extrapolated intercepts, thereby improving robustness to motion and decreasing the variance of the estimators. In this paper, we extend this model in two ways: (1) by introducing a joint total variation (JTV) prior on the intercepts and decay, and (2) by deriving a nonlinear maximum \emph{a posteriori} estimate. We evaluated the proposed algorithm by predicting left-out echoes in a rich single-subject dataset. In this validation, we outperformed other state-of-the-art methods and additionally showed that the proposed approach greatly reduces the variance of the estimated maps, without introducing bias.Comment: 11 pages, 2 figures, 1 table, conference paper, accepted at MICCAI 202

    Myelin and Modeling: Bootstrapping Cortical Microcircuits

    Get PDF
    Histological studies of myelin-stained sectioned cadaver brain and in vivo myelin-weighted magnetic resonance imaging (MRI) show that the cerebral cortex is organized into cortical areas with generally well-defined boundaries, which have consistent internal patterns of myelination. The process of myelination is largely driven by neural experience, in which the axonal passage of action potentials stimulates neighboring oligodendrocytes to perform their task. This bootstrapping process, such that the traffic of action potentials facilitates increased traffic, suggests the hypothesis that the specific pattern of myelination (myeloarchitecture) in each cortical area reveals the principal cortical microcircuits required for the function of that area. If this idea is correct, the observable sequential maturation of specific brain areas can provide evidence for models of the stages of cognitive development
    corecore