70,042 research outputs found

    Emotional Qualities of VR Space

    Full text link
    The emotional response a person has to a living space is predominantly affected by light, color and texture as space-making elements. In order to verify whether this phenomenon could be replicated in a simulated environment, we conducted a user study in a six-sided projected immersive display that utilized equivalent design attributes of brightness, color and texture in order to assess to which extent the emotional response in a simulated environment is affected by the same parameters affecting real environments. Since emotional response depends upon the context, we evaluated the emotional responses of two groups of users: inactive (passive) and active (performing a typical daily activity). The results from the perceptual study generated data from which design principles for a virtual living space are articulated. Such a space, as an alternative to expensive built dwellings, could potentially support new, minimalist lifestyles of occupants, defined as the neo-nomads, aligned with their work experience in the digital domain through the generation of emotional experiences of spaces. Data from the experiments confirmed the hypothesis that perceivable emotional aspects of real-world spaces could be successfully generated through simulation of design attributes in the virtual space. The subjective response to the virtual space was consistent with corresponding responses from real-world color and brightness emotional perception. Our data could serve the virtual reality (VR) community in its attempt to conceive of further applications of virtual spaces for well-defined activities.Comment: 12 figure

    Interactive Extraction of High-Frequency Aesthetically-Coherent Colormaps

    Get PDF
    Color transfer functions (i.e. colormaps) exhibiting a high frequency luminosity component have proven to be useful in the visualization of data where feature detection or iso-contours recognition is essential. Having these colormaps also display a wide range of color and an aesthetically pleasing composition holds the potential to further aid image understanding and analysis. However producing such colormaps in an efficient manner with current colormap creation tools is difficult. We hereby demonstrate an interactive technique for extracting colormaps from artwork and pictures. We show how the rich and careful color design and dynamic luminance range of an existing image can be gracefully captured in a colormap and be utilized effectively in the exploration of complex datasets
    • 

    corecore