957 research outputs found

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    Design of Wireless Communication Networks for Cyber-Physical Systems with Application to Smart Grid

    Get PDF
    Cyber-Physical Systems (CPS) are the next generation of engineered systems in which computing, communication, and control technologies are tightly integrated. On one hand, CPS are generally large with components spatially distributed in physical world that has lots of dynamics; on the other hand, CPS are connected, and must be robust and responsive. Smart electric grid, smart transportation system are examples of emerging CPS that have significant and far-reaching impact on our daily life. In this dissertation, we design wireless communication system for CPS. To make CPS robust and responsive, it is critical to have a communication subsystem that is reliable, adaptive, and scalable. Our design uses a layered structure, which includes physical layer, multiple access layer, network layer, and application layer. Emphases are placed on multiple access and network layer. At multiple access layer, we have designed three approaches, namely compressed multiple access, sample-contention multiple access, and prioritized multiple access, for reliable and selective multiple access. At network layer, we focus on the problem of creating reliable route, with service interruption anticipated. We propose two methods: the first method is a centralized one that creates backup path around zones posing high interruption risk; the other method is a distributed one that utilizes Ant Colony Optimization (ACO) and positive feedback, and is able to update multipath dynamically. Applications are treated as subscribers to the data service provided by the communication system. Their data quality requirements and Quality of Service (QoS) feedback are incorporated into cross-layer optimization in our design. We have evaluated our design through both simulation and testbed. Our design demonstrates desired reliability, scalability and timeliness in data transmission. Performance gain is observed over conventional approaches as such random access

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Demand Response on domestic thermostatically controlled loads

    Get PDF

    Motor Energy Management Based on Non-Intrusive Monitoring Technology and Wireless Sensor Networks

    Get PDF
    This paper proposes a motor energy management architecture, which is composed of a data acquisition platform, a condition monitoring platform, an energy consumption and saving analysis platform, a communication platform, and a motor energy data management platform. Under the guidance of the architecture, an in-service motor monitoring and energy management system is developed based on non intrusive monitoring technologies and wireless sensor networks. The system has two subsystems: a data acquiring and analysis subsystem, and a condition monitoring and energy management subsystem. To evaluate the in-service motor energy usage, motor efficiency estimation methods are discussed. And a motor monitoring front-end device is developed with the implement of the methods introduced. The device is designed as three separate units, including a sensing unit, a processing unit, and a communication unit. Such a flexible design could meet various requirements in the application. The wireless sensor network is a self-organized network with dynamic topology. As a lowcost, robust, and reliable communication network, it is used to connect the front-end devices with the central supervisory station. A WSN node is designed and implemented for the inservice motor monitoring system, which can also be used as a unit of the front-end device. The laboratory tests and plant application show that the system can help the plant managers to improve motor-driven systems

    Intelligent and Low Overhead Network Synchronization over Large-Scale Industrial Internet of Things Systems

    Get PDF
    With the extensive development of information and communication technologies and vertical industry applications, industrial IoT (IIoT) systems are expected to enable a wide variety of applications, including advanced manufacturing, networked control, and smart supply chain, which all exclusively hinge on the efficient cooperation and coordination among the involved IIoT machines and infrastructures. The ubiquitous connection among IIoT entities and the associated exchange of collaborative information necessitate the achievement of accurate network synchronization, which can guarantee the temporal alignment of the critical information. To enhance the temporal correlation of heterogeneous devices in large-scale IIoT systems, this thesis aims at designing industry-oriented network synchronization protocols in terms of accuracy improvement, resource-saving, and security enhancement with the assistance of learning-based methods. Initially, the real-time timestamps and historical information of each IIoT devices are collected and analyzed to explore the varying rate of the skew (VRS) at each enclosed clock. K-means clustering algorithm is adopted to organize the distributed devices into a few groups, and each of them is assigned with an optimized synchronization frequency to avoid potential resource waste while ensuring synchronization accuracy. Historical VRS values are further utilized as the identification of each clock for providing verification information so that the security against message manipulation attacks during network synchronization can be enhanced. Moreover, a digital twin-enabled clock model is established by comprehensively investigating the characteristics of each clock with diversified operating environments. A cloud-edge-collaborative system architecture is orchestrated to enhance the efficiency of data gathering and processing. With the assistance of the accurate estimation generated by the digital twin model for each clock, the situation-awareness of network synchronization is enhanced in terms of a better understanding of the clock feature and necessary synchronization frequency. Meanwhile, since temporal information generated at each local IIoT devices are efficiently gathered at the edge devices, the effect of packet delay variation is significantly reduced while the synchronization performance under various network conditions can be guaranteed. To further reduce the network resource consumption and improvement the performance under abnormal behaviors during network synchronization, a passive network synchronization protocol based on concurrent observations is proposed, where timestamps are exchanged without occupying dedicated network resources during synchronization. The proposed scheme is established based on the fact that a group of IIoT devices close to each other can observe the same physical phenomena, e.g., electromagnetic signal radiation, almost simultaneously. Moreover, multiple relay nodes are coordinated by the cloud center to disseminate the reference time information throughout the IIoT system in accomplishing global network synchronization. Additionally, a principal component analysis-assisted outlier detection mechanism is designed to tackle untrustworthy timestamps in the network according to the historical observation instants recorded in the cloud center. Simulation results indicate that accurate network synchronization can be achieved with significantly reduced explicit interactions
    • …
    corecore