4,570 research outputs found

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Overlay networks for smart grids

    Get PDF

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture

    Get PDF
    Advanced metering infrastructure (AMI) subsystems monitor and control energy distribution through exchange of information between smart meters and utility networks. A key challenge is how to select a cost-effective communication system without compromising the performance of the applications. Current communication technologies were developed for conventional data networks with different requirements. It is therefore necessary to investigate how much of existing communication technologies can be retrofitted into the new energy infrastructure to cost-effectively deliver acceptable level of service. This paper investigates broadband power line communications (BPLC) as a backhaul solution in AMI. By applying the disparate traffic characteristics of selected AMI applications, the network performance is evaluated. This study also examines the communication network response to changes in application configurations in terms of packet sizes. In each case, the network is stress-tested and performance is assessed against acceptable thresholds documented in the literature. Results show that, like every other communication technology, BPLC has certain limitations; however, with some modifications in the network topology, it indeed can fulfill most AMI traffic requirements for flexible and time-bounded applications. These opportunities, if tapped, can significantly improve fiscal and operational efficiencies in AMI services. Simulation results also reveal that BPLC as a backhaul can support flat and clustered AMI structures with cluster size ranging from 1 to 150 smart meters
    corecore