33 research outputs found

    Virtual Synaesthesia: Crossmodal Correspondences and Synesthetic Experiences

    Get PDF
    As technology develops to allow for the integration of additional senses into interactive experiences, there is a need to bridge the divide between the real and the virtual in a manner that stimulates the five senses consistently and in harmony with the sensory expectations of the user. Applying the philosophy of a neurological condition known as synaesthesia and crossmodal correspondences, defined as the coupling of the senses, can provide numerous cognitive benefits and offers an insight into which senses are most likely to be ‘bound’ together. This thesis aims to present a design paradigm called ‘virtual synaesthesia’ the goal of the paradigm is to make multisensory experiences more human-orientated by considering how the brain combines senses in both the general population (crossmodal correspondences) and within a select few individuals (natural synaesthesia). Towards this aim, a literature review is conducted covering the related areas of research umbrellaed by the concept of ‘virtual synaesthesia’. Its research areas are natural synaesthesia, crossmodal correspondences, multisensory experiences, and sensory substitution/augmentation. This thesis examines augmenting interactive and multisensory experiences with strong (natural synaesthesia) and weak (crossmodal correspondences) synaesthesia. This thesis answers the following research questions: Is it possible to replicate the underlying cognitive benefits of odour-vision synaesthesia? Do people have consistent correspondences between olfaction and an aggregate of different sensory modalities? What is the nature and origin of these correspondences? And Is it possible to predict the crossmodal correspondences attributed to odours? The benefits of augmenting a human-machine interface using an artificial form of odour-vision synaesthesia are explored to answer these questions. This concept is exemplified by transforming odours transduced using a custom-made electronic nose and transforming an odour's ‘chemical footprint’ into a 2D abstract shape representing the current odour. Electronic noses can transform odours in the vapour phase generating a series of electrical signals that represent the current odour source. Weak synaesthesia (crossmodal correspondences) is then investigated to determine if people have consistent correspondences between odours and the angularity of shapes, the smoothness of texture, perceived pleasantness, pitch, musical, and emotional dimensions. Following on from this research, the nature and origin of these correspondences were explored using the underlying hedonic (values relating to pleasantness), semantic (knowledge of the identity of the odour) and physicochemical (the physical and chemical characteristics of the odour) dependencies. The final research chapter investigates the possibility of removing the bottleneck of conducting extensive human trials by determining what the crossmodal correspondences towards specific odours are by developing machine learning models to predict the crossmodal perception of odours using their underlying physicochemical features. The work presented in this thesis provides some insight and evidence of the benefits of incorporating the concept ‘virtual synaesthesia’ into human-machine interfaces and research into the methodology embodied by ‘virtual synaesthesia’, namely crossmodal correspondences. Overall, the work presented in this thesis shows potential for augmenting multisensory experiences with more refined capabilities leading to more enriched experiences, better designs, and a more intuitive way to convey information crossmodally

    Earth as Interface: Exploring chemical senses with Multisensory HCI Design for Environmental Health Communication

    Get PDF
    As environmental problems intensify, the chemical senses -that is smell and taste, are the most relevantsenses to evidence them.As such, environmental exposure vectors that can reach human beings comprise air,food, soil and water[1].Within this context, understanding the link between environmental exposures andhealth[2]is crucial to make informed choices, protect the environment and adapt to new environmentalconditions[3].Smell and taste lead therefore to multi-sensorial experiences which convey multi-layered information aboutlocal and global events[4]. However, these senses are usually absent when those problems are represented indigital systems. The multisensory HCIdesign framework investigateschemical sense inclusion withdigital systems[5]. Ongoing efforts tackledigitalization of smell and taste for digital delivery, transmission or substitution [6]. Despite experimentsproved technological feasibility, its dissemination depends on relevant applicationdevelopment[7].This thesis aims to fillthose gaps by demonstratinghow chemical senses provide the means to link environment and health based on scientific andgeolocation narratives [8], [9],[10]. We present a Multisensory HCI design process which accomplished symbolicdisplaying smell and taste and led us to a new multi-sensorial interaction system presented herein. We describe the conceptualization, design and evaluation of Earthsensum, an exploratory case study project.Earthsensumoffered to 16 participants in the study, environmental smell and taste experiences about real geolocations to participants of the study. These experiences were represented digitally using mobilevirtual reality (MVR) and mobile augmented reality (MAR). Its technologies bridge the real and digital Worlds through digital representations where we can reproduce the multi-sensorial experiences. Our study findings showed that the purposed interaction system is intuitive and can lead not only to a betterunderstanding of smell and taste perception as also of environmental problems. Participants comprehensionabout the link between environmental exposures and health was successful and they would recommend thissystem as education tools. Our conceptual design approach was validated and further developments wereencouraged.In this thesis,we demonstratehow to applyMultisensory HCI methodology to design with chemical senses. Weconclude that the presented symbolic representation model of smell and taste allows communicatingtheseexperiences on digital platforms. Due to its context-dependency, MVR and MAR platforms are adequatetechnologies to be applied for this purpose.Future developments intend to explore further the conceptual approach. These developments are centredon the use of the system to induce hopefully behaviourchange. Thisthesisopens up new application possibilities of digital chemical sense communication,Multisensory HCI Design and environmental health communication.À medida que os problemas ambientais se intensificam, os sentidos químicos -isto é, o cheiroe sabor, são os sentidos mais relevantes para evidenciá-los. Como tais, os vetores de exposição ambiental que podem atingir os seres humanos compreendem o ar, alimentos, solo e água [1]. Neste contexto, compreender a ligação entre as exposições ambientais e a saúde [2] é crucial para exercerescolhas informadas, proteger o meio ambiente e adaptar a novas condições ambientais [3]. O cheiroe o saborconduzemassima experiências multissensoriais que transmitem informações de múltiplas camadas sobre eventos locais e globais [4]. No entanto, esses sentidos geralmente estão ausentes quando esses problemas são representados em sistemas digitais. A disciplina do design de Interação Humano-Computador(HCI)multissensorial investiga a inclusão dossentidos químicos em sistemas digitais [9]. O seu foco atual residena digitalização de cheirose sabores para o envio, transmissão ou substituiçãode sentidos[10]. Apesar dasexperimentaçõescomprovarem a viabilidade tecnológica, a sua disseminação está dependentedo desenvolvimento de aplicações relevantes [11]. Estatese pretendepreencher estas lacunas ao demonstrar como os sentidos químicos explicitama interconexãoentre o meio ambiente e a saúde, recorrendo a narrativas científicas econtextualizadasgeograficamente[12], [13], [14]. Apresentamos uma metodologiade design HCImultissensorial que concretizouum sistema de representação simbólica de cheiro e sabor e nos conduziu a um novo sistema de interação multissensorial, que aqui apresentamos. Descrevemos o nosso estudo exploratório Earthsensum, que integra aconceptualização, design e avaliação. Earthsensumofereceu a 16participantes do estudo experiências ambientais de cheiro e sabor relacionadas com localizações geográficasreais. Essas experiências foram representadas digitalmente através derealidade virtual(VR)e realidade aumentada(AR).Estas tecnologias conectamo mundo real e digital através de representações digitais onde podemos reproduzir as experiências multissensoriais. Os resultados do nosso estudo provaramque o sistema interativo proposto é intuitivo e pode levar não apenas a uma melhor compreensão da perceção do cheiroe sabor, como também dos problemas ambientais. O entendimentosobre a interdependência entre exposições ambientais e saúde teve êxitoe os participantes recomendariam este sistema como ferramenta para aeducação. A nossa abordagem conceptual foi positivamentevalidadae novos desenvolvimentos foram incentivados. Nesta tese, demonstramos como aplicar metodologiasde design HCImultissensorialpara projetar com ossentidos químicos. Comprovamosque o modelo apresentado de representação simbólica do cheiroe do saborpermite comunicar essas experiênciasem plataformas digitais. Por serem dependentesdocontexto, as plataformas de aplicações emVR e AR são tecnologias adequadaspara este fim.Desenvolvimentos futuros pretendem aprofundar a nossa abordagemconceptual. Em particular, aspiramos desenvolvera aplicaçãodo sistema para promover mudanças de comportamento. Esta tese propõenovas possibilidades de aplicação da comunicação dos sentidos químicos em plataformas digitais, dedesign multissensorial HCI e de comunicação de saúde ambiental

    Marble melancholy: using crossmodal correspondences of shapes, materials, and music to predict music-induced emotions

    Get PDF
    Introduction: Music is known to elicit strong emotions in listeners, and, if primed appropriately, can give rise to specific and observable crossmodal correspondences. This study aimed to assess two primary objectives: (1) identifying crossmodal correspondences emerging from music-induced emotions, and (2) examining the predictability of music-induced emotions based on the association of music with visual shapes and materials. Methods: To achieve this, 176 participants were asked to associate visual shapes and materials with the emotion classes of the Geneva Music-Induced Affect Checklist scale (GEMIAC) elicited by a set of musical excerpts in an online experiment. Results: Our findings reveal that music-induced emotions and their underlying core affect (i.e., valence and arousal) can be accurately predicted by the joint information of musical excerpt and features of visual shapes and materials associated with these music-induced emotions. Interestingly, valence and arousal induced by music have higher predictability than discrete GEMIAC emotions. Discussion: These results demonstrate the relevance of crossmodal correspondences in studying music-induced emotions. The potential applications of these findings in the fields of sensory interactions design, multisensory experiences and art, as well as digital and sensory marketing are briefly discussed.Peer Reviewe

    Development, assessment and optimisation of meat systems for the aging consumer through processing and packaging modification

    Get PDF
    In response to the growing population of those aged over 65, it is essential we prepare for better quality of life not just increased life years. Sensory decline impacts, not just the way we perceive flavours, but the way we see food and the manner in which we handle food. The studies reported in this thesis examined the effects of sensory decline across a wide age cohort using different meat products. The thesis falls under two parts. Part 1 focused on the food aspect of sensory decline which assessed the impacts of texture modification, fat and salt-reduction, salt-substitution and flavour enhancement; all of which resulted in the development of the most enhanced product that incorporated aging consumer needs. Part 2 focussed on the decline in cognitive and physical ability which occurs as a result of the aging process in order to develop a more suitable, convenient and safe food package for the aging consumer. This thesis offers a design for establishing meal solutions for the elderly consumers based around meat products. Of all product attributes, texture was found to be a major determinant in establishing preferences in various age cohorts. It was found that softer foods which were easier to chew and swallow were favoured by older age cohorts. Flavour differences determined among varying age cohorts was also noted. Preferences for fat, fat-replacers, salt and salt-replacers were established. A consistent decreased perception for salt was noted in study participants aged 41-64 in three studies. The use of trained and consumer panels allowed for the development of the ‘ideal’ processed meat product which was then presented to older consumers in the elderly-friendly packaging formats which were highly accepted. Understanding the needs and requirements of the elderly consumers is paramount in encouraging independent, safe and healthy living of these individuals in our community. It is hoped that this study provides some evidence to educate and assist in this process

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others
    corecore